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USA

Received 15 November 1994, in final form 12 September 1995

Abstract. We study complex-temperature singularities of the Ising model on the triangular
and honeycomb lattices. We first discuss the complex-T phases and their boundaries. From
exact results, we determine the complex-T singularities in the specific heat and magnetization.
For the triangular lattice we discuss the implications of the divergence of the magnetization at
the pointu = − 1

3 (whereu = z2 = e−4K ) and extend a previous study by Guttmann of the
susceptibility at this point with the use of differential approximants. For the honeycomb lattice,
from an analysis of low-temperature series expansions, we have found evidence that the uniform
and staggered susceptibilitiesχ̄ and χ̄ (a) both have divergent singularities atz = −1 ≡ z`, and
our numerical values for the exponents are consistent with the hypothesis that the exact values
areγ ′

` = γ ′
`,a = 5

2 . The critical amplitudes at this singularity were calculated. Using our exact
results forα′ and β together with numerical values forγ ′ from series analyses, we find that
the exponent relationα′ + 2β + γ ′ = 2 is violated atz = −1 on the honeycomb lattice; the
right-hand side is consistent with being equal to 4 rather than 2. The connections of the critical
exponents at these two singularities on the triangular and honeycomb lattice are discussed.

1. Introduction

In this paper we study complex-temperature (CT) singularities of the (isotropic, nearest-
neighbour, spin-12) Ising model on the triangular and honeycomb lattices. There are several
reasons for studying the properties of statistical mechanical models with the temperature
variable generalized to take on complex values. First, one can understand more deeply
the behaviour of various thermodynamic quantities by seeing how they behave as analytic
functions of complex temperature; indeed,CT singularities can significantly influence the
behaviour for physical values of the temperature. Second, one can see how the physical
phases of a given model generalize to regions in appropriate complex-temperature variables.
Third, a knowledge of the complex-temperature singularities of quantities which have not
been calculated exactly, such as the susceptibility of the2D Ising model, helps in the search
for exact, closed-form expressions for these quantities. The natural boundaries of the free
energy for the2D (square lattice) Ising model were first given in [1] (see also [2]). Early
studies ofCT singularities in the2D and3D Ising model were motivated by their connection
with partition function zeros [1–3] and by their effect on series analyses at the physical criti-
cal point [4–6]. Other previous works onCT properties of the2D Ising model include [7–9]§.

† E-mail address: vmatveev@max.physics.sunysb.edu
‡ E-mail address: shrock@max.physics.sunysb.edu
§ We also note that (i) complex-temperature properties of anisotropic2D Ising models have been discussed in [10];
(ii) partition function zeros of some Potts models (the Ising model being the two-state case) have been discussed,
e.g. in [11, 12]; and (iii) a different approach to the effort to calculate the exact2D Ising susceptibility is via
inversion relations [13].

0305-4470/96/040803+21$19.50c© 1996 IOP Publishing Ltd 803
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2. Complex-temperature extensions of physical phases

Here we discuss the complex-temperature phase diagrams. Our notation follows that in our
previous paper [9], to which we refer the reader; we only recall thatz = e−2K , u = z2 and
v = tanhK, whereK = βJ and β = (kBT )−1. It will be convenient to use the reduced
susceptibilityχ̄ = β−1χ . Following the calculations of the (zero-field) free energyf [14]
of the square-lattice Ising model,f was calculated for the triangular (t) and honeycomb (hc)
lattices [15]. The spontaneous magnetizationM, first derived for the square lattice [16],
was calculated for the t and hc lattices in [17, 18], respectively. These works made use
of the geometric duality between the triangular and honeycomb lattices and the associated
star–triangle relation connecting the Ising model on these lattices (e.g. [19]). Two elliptic
modulus variables appropriate for the triangular (t) and honeycomb (hc) lattices are

k<,t = 4u3/2

(1 + 3u)1/2(1 − u)3/2
(2.1)

and

k<,hc = 4z3/2(1 − z + z2)1/2

(1 − z)3(1 + z)
(2.2)

together withk>,3 = k−1
<,3 for 3 = t, hc.

As before (see equations (2.10) and (2.11) of [9]), it is convenient to discuss theCT

phase diagram in the variablesz or v since these remove an infinite repetition of phases in
the complexK plane under certain imaginary shifts ofK. The requisiteCT extensions of
the physical phases can be seen by using the exact expressions for the (reduced) free energy
f (f = −βF = limNs→∞ N−1

s ln Z) for the triangular lattice [15],

ft = ln 2 + 1

2

∫ π

−π

∫ π

−π

dθ1 dθ2

(2π)2
ln

[
C3 + S3 − SP (θ1, θ2)

]
(2.3)

and honeycomb lattice,

fhc = ln 2 + 1

4

∫ π

−π

∫ π

−π

dθ1 dθ2

(2π)2
ln

{
1
2

[
C3 + 1 − S2P(θ1, θ2)

]}
(2.4)

whereC = cosh(2K), S = sinh(2K), and

P(θ1, θ2) = cosθ1 + cosθ2 + cos(θ1 + θ2) . (2.5)

The functionP(θ1, θ2) ranges from a maximum value of 3 atθ1 = θ2 = 0 to a minimum
value of− 3

2 at θ1 = θ2 = 2π/3. The continuous locus of points where the free energy is
non-analytic is comprised of points where the argument of the logarithm inf vanishes†.
Some of these points form boundaries of complex-temperature phases, while others form
arcs or line segments which terminate in the interiors of phases and hence do not separate
any phases. Expressed in terms of low-temperature variables,

ft = 3K + 1

2

∫ π

−π

∫ π

−π

dθ1 dθ2

(2π)2
ln

[
(1 + 3u2) − 2u(1 − u)P (θ1, θ2)

]
(2.6)

and

fhc = 3

2
K + 1

4

∫ π

−π

∫ π

−π

dθ1 dθ2

(2π)2

× ln
[
(1 + z)2

{(
1 − 2z + 6z2 − 2z3 + z4

) − 2z(1 − z)2P(θ1, θ2)
}]

. (2.7)

† The free energy is trivially infinite atK = ±∞; since these are isolated points and hence do not form part of a
boundary separating phases, they will not be important here.
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(The fact that the log in the integral in (2.7) involves a polynomial inz rather thanu is
due to the odd coordination numberq = 3 of the hc lattice.) The respective arguments of
the logarithms in (2.6) and (2.7) vanish along the curves defined by the solutions to the
equations

1 + 3u2 − 2u(1 − u)x = 0 (2.8)

and

(1 − 2z + 6z2 − 2z3 + z4) − 2z(1 − z)2x = 0 (2.9)

for − 3
2 6 x 6 3, wherex = P(θ1, θ2). (Note that the curve defined by the solution to

equation (2.9) contains the isolated pointz = −1 at which the initial factor,(1+ z)2, in the
log in equation (2.7) vanishes.) The solution of (2.8) consists of the union of the circle

u = − 1
3 + 2

3eiφ (2.10)

for 0 6 φ < 2π with the semi-infinite line segment

−∞ 6 u 6 − 1
3 (2.11)

as shown in figure 1(a). We denote the endpoint (e) of this line segment asue = − 1
3 and

the intersection of the circle and the line segment asus = −1. The solution to (2.9) is
shown in figure 2. Since equations (2.8) and (2.9) have real coefficients, the solutions are
either real or consist of complex conjugate pairs; this explains why the respective phase
diagrams in figures 1(a) and 2 are symmetric about the horizontal axes. Furthermore,
under the transformationu → 1/u, the left-hand side of (2.8) retains its form, up to an
overall factor; consequently the locus of solutions in figure 1(a) is invariant under this
mapping. The analogous statements apply to (2.9) and hence figure 2 concerning the
mappingz → 1/z.

The curves in figure 1(a) for the triangular lattice divide the complexu plane into
two regions which are complex-temperature extensions of physical phases: (i) the complex
ferromagnetic (FM) phase, which is the extension of the physicalFM phase occupying the
interval 06 u 6 uc, whereuc = 1

3 is the critical point, and (ii) the complexZ2-symmetric
or paramagnetic (PM) phase, which is the extension of the physicalPM phase occupying the
interval uc < u 6 1. There is no antiferromagnetically ordered (AFM) phase for complex
temperature, just as there was none for physical temperature. Henceforth, for brevity we
shall generally drop the qualifier ‘complex-temperature extension’ on these phases and refer
to them simply asFM andPM. As is evident from figure 1(a), there is a section of the line
segment (2.11) protruding into the interior of the complexFM phase. The corresponding
phase diagrams in thez and v plane are shown in figures 1(b) and (c) (for the latter, see
also [11]). Note that the phase labelled ‘O’ (for ‘other’) in figures 1(b) and (c) has no
overlap with any physical phase.

The complex-temperature phase diagram for the honeycomb lattice is shown in thez

plane in figure 2 and consists ofFM, AFM andPM phases. As implied by duality, the curves
are formally identical to those of the triangular lattice in thev plane (figure 1(c)); however,
the actual phase structure is, of course, different. We label the pointz = −1 ≡ z` and the
intersection pointsz = ±i ≡ zs±. The phase diagram for the hc lattice in thev plane is
obtained from figure 1(b) for the t lattice in thez plane by the replacementsz → v, FM ↔
PM, and O→ AFM.

The points on these phase diagrams where curves (including line segments) cross
each other are singular points of the curves in the technical terminology of algebraic
geometry [20]. Specifically, they are multiple points of index 2, where two arcs of the
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Figure 1. Complex-temperature phases and
associated boundaries for the Ising model on the
triangular lattice, in the variables (a) u, (b) z

and (c) v. See the text for discussion. Note that
in (a) the line segment extends fromu = − 1

3
to u = −∞, and in (b), the two line segments
extend, respectively, from±i/

√
3 to ±i∞ along

the positive (negative) imaginary axis. In (c),
the intersections of the curves with the realv

axis occur, from left to right, atv = −1,
v = vc = 2 − √

3, andv = v−1
c = 2 + √

3. The
endpoints of the arcs occur atv = exp(±iπ/3).

curve cross each other (with an angle ofπ/2). The arc endpoints atz = e±iπ/3 are, of
course, also singular points of the curve in the mathematical sense.

Using the general fact that the high-temperature and (for discrete spin models such as
the Ising model) the low-temperature expansions have finite radii of convergence, we can
use standard analytic continuation arguments to establish that in addition to the free energy



Complex-temperature singularities in thed = 2 Ising model 807

Figure 2. Complex-temperature phases
and associated boundaries for the Ising
model on the honeycomb lattice, in the
variablez. See the text for discussion.

and its derivatives, also the magnetization and susceptibility are analytic functions within
each of the complex-temperature phases. This defines these functions as analytic functions
of the respective complex variable (u, z or v). Our definition of singular forms of a function
at a complex-temperature singular point was given in [9]. Note, in particular, that whereas
a physical critical point can only be approached from two different phases, high- or low-
temperature, some complex-temperature singular points may be approached from more than
two phases.

For the hc lattice we shall also study the staggered susceptibility,χ̄ (a). The low-
temperature series for this quantity is expressed in terms of the variabley = 1/z, and for
our analysis of this series, we observe that theCT phase diagram in they plane has the
same phase boundaries as those in figure 2, owing to the invariance of this boundary under
z → 1/z. The phases are, of course, inverted, so that the innermost phase isAFM, to its
right, PM, and in the outer region,FM.

Finally, because of the star–triangle relations connecting the Ising model on the
triangular and honeycomb lattices, the following exact relations hold [21]:

χt(u) = 1
2

[
χhc(z

′) + χ
(a)

hc (z′)
]

(2.12)

where

u = z′

1 − z′ + z′2 (2.13)

and

χt(w) = 1
2

[
χhc(v) + χ

(a)

hc (v)
] = 1

2

[
χhc(v) + χhc(−v)

]
(2.14)

where

v2 = w

1 − w + w2
. (2.15)
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3. Complex-temperature behaviour of the specific heat

3.1. Triangular lattice

The exact expression for the specific heatC in the FM phase is [15]†

k−1
B K−2C = − 8u

(1 − u)2
+ 2(3u3 + 9u2 − 7u + 3)k<

πu3/2(1 − u)2
K(k<) − 6(1 − u)k<

πu3/2
E(k<) (3.1)

where K(k) = ∫ π/2
0 dθ [1 − k2 sin2 θ ]−1/2 and E(k) = ∫ π/2

0 dθ [1 − k2 sin2 θ ]1/2 are the
complete elliptic integrals of the first and second kinds, respectively, and in this subsection
we setk< ≡ k<,t. We proceed to analyse theCT singularities ofC.

3.1.1. Vicinity ofu = − 1
3. To consider the approach to the pointu = − 1

3 from within the
complex extension of theFM phase, we first note that, setting

u = − 1
3 + 1

3εeiφ (3.2)

whereε is real and positive, the elliptic modulus diverges as

k< → − i

2(εeiφ)1/2
as ε → 0 . (3.3)

Taking the branch cut for the fractional powers in (2.1) to lie fromu = ue to u = −∞, then
for the approach tou = − 1

3 from the origin along the negative real axis, which corresponds
to φ = 0 in (3.2) and (3.3),k< ∼ −(i/2)(ε)−1/2 → −i∞. Next, we letk< ≡ iκ/κ ′, where
κ ′ is the complementary elliptic modulus satisfyingκ2+κ ′2 = 1. It follows that asu → − 1

3,
κ = ε/(4 + ε) → 0. Using the identity [22]

K(iκ/κ ′) = κ ′K(κ) (3.4)

we find that the term involvingK(k<) in (3.1) approaches a constant times(1 + 3u)−1/2.
In the second term, one factor of(1 + 3u)−1/2 comes from thek< while another comes
from the elliptic integralE(k<), so that this term diverges like(1 + 3u)−1. This is the
leading divergence inC, so we thus obtain the exact result that asu → − 1

3 from within
the complexFM phase, the critical exponent for the specific heat is

α′
e = 1 . (3.5)

To our knowledge, this is the first time an algebraic power has been found for the specific
heat critical exponent at a singular point in a2D Ising model. For the critical amplitude, we
calculate (takingφ = 0 in (3.2))

k−1
B K−2C → −2(3)3/2

π
|1 + 3u|−1 . (3.6)

The infinite set ofK values corresponding to the pointu = − 1
3 is

K = 1

4
ln 3 − (2n + 1)iπ

4
(3.7)

wheren ∈ Z.

† Houtappel’s expressions for the internal energy and specific heat, equations (108) and (109), respectively, in
[15], are incorrect if one uses the integralsε1(β) andε2(β) as he defines them, with the range of integration from
φ = 0 to 2π . If, instead, one takes the range of integration fromφ = 0 to φ = π/2, so that the integrals are just
the usual elliptic integralsK(

√
β) andE(

√
β), then his equations (108) and (109) become correct.
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3.1.2. Vicinity ofu = −1. We first observe that asu → −1 from within the complexFM

phase,k< → −1. It follows that in this case the term involvingE(k<) in (3.1) is finite
while the term involvingK(k<) diverges logarithmically, so that at this pointus = −1,

α′
s = 0 (log div) . (3.8)

Thus, the divergence in the specific heat atu = −1 on the triangular lattice is of the same
logarithmic type that it is [8, 9] atu = −1 on the square lattice, and the same as it is at the
respective physical critical points on both the square and triangular (as well as honeycomb)
lattices. For the critical amplitude, using the Taylor series expansion ofk<, as a function
of u, nearu = −1,

k< = −1 − 2−3(1 + u)3 + O((1 + u)4) (3.9)

we calculate

k−1
B K−2C → 12i

π
ln |1 + u| as u → −1 . (3.10)

The infinite set ofK values corresponding to this point was given in (3.1.8) of paper I:
K = −iπ/4 + niπ/2 wheren ∈ Z.

One can also consider the approach tou = −1 from within the complex-temperature
extension of the symmetric,PM phase (from the upper left or lower left in figure 1(a)).
Using the exact expression for the specific heat applicable in the symmetric phase [15, 19],
we find the same logarithmic divergence inC, so that the corresponding exponent is

αs = 0 (log div) . (3.11)

3.2. Honeycomb lattice

From the exact expression (2.7) forfhc, we calculate the specific heat in theFM phase as

k−1
B K−2C = − 8z2

(1 − z2)2
+ [3 − 12(z + z7) + 28(z2 + z6) − 20(z3 + z5) + 18z4]

π(1 + z)(1 − z)5(1 − z + z2)
K(k<)

−3(1 − z)(1 + z)

π(1 − z + z2)
E(k<) (3.12)

(in this subsection we takek< ≡ k<,hc and k> ≡ k>,hc). The expression (3.12) applies in
both the physicalFM and AFM phases, and may be analytically continued throughout the
respective complex-temperature extensions of these phases.

Since there are singular arc endpoints protruding into thePM phase for the honeycomb
lattice (in contrast to the case for the triangular lattice, where there are none), it will be of
interest to examine the singular behaviour of various quantities at these endpoints. For this
purpose, we observe that in the physicalPM phase, one has

k−1
B K−2C = v−2(1−v2)1/2

[
−1

2
(1−v2)3/2+ 4

π(1+3v2)1/2
K(k>)− 3(1 − v2)

π(1 + 3v2)1/2
E(k>)

]
.

(3.13)

3.2.1. Vicinity ofz = −1. As one approaches the pointz = z` = −1 from within either
the FM or AFM phase, the specific heat diverges, with the dominant divergence arising from
the first term in (3.12), which becomes−2(1 + z)−2. (There is also a weaker, logarithmic
divergence from the term involvingK(k<).) Hence, we find

α′
`,FM = α′

`,AFM = 2 . (3.14)
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Now, K = − 1
2 ln z, so choosing the branch cut for the complex logarithm to lie along the

negative real axis and choosing the first Riemann sheet for the evaluation of the logarithm,
as z approaches−1 from above or below the negative real axis, one hasK` = ∓iπ/2,
respectively, and hence in both cases

k−1
B C → π2

2(1 + z)2
as z → −1 . (3.15)

It is interesting to relate the critical exponent (3.14) to the critical exponentα′
e (3.5) for

C on the triangular lattice at the pointu = ue = − 1
3, which corresponds, via (2.13), to

z′ = z = −1 on the honeycomb lattice. (Recall that although these points correspond to
each other, the pointu = − 1

3 in the phase diagram of the triangular lattice can only be
approached from within theFM phase, whereas the pointz = −1 in the phase diagram of
the honeycomb lattice can be approached from within either theFM or AFM phases.) Given
the star–triangle relations which connect the Ising model on these two lattices and the fact
that the Taylor series expansion ofu + 1

3, as a function ofz′, in the vicinity of z′ = −1
(= z on the honeycomb lattice), starts with the quadratic term,

u + 1
3 = 1

9(1 + z′)2 + 1
9(1 + z′)3 + O((1 + z′)4) (3.16)

it follows that the exponentsα′
`,FM = α′

`,AFM = 2 at z = −1 on the honeycomb lattice have
twice the value ofα′

e = 1 at u = − 1
3 on the triangular lattice.

3.2.2. Vicinity ofz = ±i. The points z = ±i can be approached from within the
complex-temperature extensions of theFM, AFM and PM phases. For the approach to
z = ±i from within the complexFM and AFM phases, we find from (3.12) that the first
term and the term involvingE(k<) yield finite contributions, while the term involving
K(k<) diverges logarithmically, as±(4i/π)K(k< → −1). Using the fact that asλ → ±1,
K(λ) → 1

2 ln(16/(1 − λ2)), and the Taylor series expansion ofk2
< in the neighbourhood of

z = ±i,

k2
< = 1 − 2(z ∓ i)3 + O((z ∓ i)4) (3.17)

we can express the most singular term on theRHS of equation (3.12) as∓(2i/π) ln[(z∓ i)3].
EvaluatingK = − 1

2 ln z for z = ±i on the first Riemann sheet of the logarithm, we have
K = ∓iπ/4, so that

k−1
B C ∼ ± i

8π
ln

[
(z ∓ i)3

]
. (3.18)

It follows that for z = zs,± = ±i,

α′
s,FM = α′

s,AFM = 0 (log div) . (3.19)

The results forα′
s,FM andα′

s,AFM are the same as we found for the analogous exponents on
the triangular lattice at the pointu = −1 corresponding, via (2.13) withz′ ≡ z, to z = ±i
on the honeycomb lattice.

For the approach to the pointsv = vs± = ±i from within the PM phase, we find that
the term involvingK(k>) produces a logarithmic divergence inC, so that the exponent
αs,PM ≡ αs is

αs = 0 (log div) . (3.20)

Taking the branch cuts for the factor(1+3v2)1/2 to lie along the semi-infinite line segments
from ±i/

√
3 to ±i∞, and taking the approach such that(−1)1/2 is evaluated as+i, we
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find that this term yields(2i/π) ln[(1 − k2
>)]. Using the Taylor series expansion ofk2

>, as
a function ofv, nearv = i,

k2
> = 1 − 2i(v − i)3 + O((v − i)4) (3.21)

and its complex conjugate forv → −i, and the resultK = arctanh(±i) = ±iπ/4, we find

k−1
B C ∼ − iπ

8
ln[(v ∓ i)3] . (3.22)

(In the evaluation of the function arctanh(ζ ) = 1
2 ln[(1 + ζ )/(1 − ζ )] here and below, we

again use the first Riemann sheet of the logarithm.)

3.2.3. Vicinity ofv = ±i(3)−1/2. We next determine the singularities of the specific heat
as one approaches the endpointsv = ±ve = ±i/

√
3 of the semi-infinite line segments

protruding into thePM phase. We find thatC is divergent, with the leading divergence
arising from the term involvingE(k>). This term gives±(4

√
3/π)(1+ 3v2)−1 asv → ±i,

so

αe = 1 . (3.23)

Using K = arctanh(±i/
√

3) = ±iπ/6, we have

k−1
B C → ∓ π

33/2(1 + 3v2)
as v → ± i√

3
. (3.24)

3.2.4. Elsewhere on the complex-temperature phase boundary.The free energyfhc is non-
analytic across the complex-temperature phase boundaries, and hence, of course, this is also
true of its derivatives with respect toK, in particular, the internal energyU and the specific
heatC. As an illustration, consider moving along a ray outward from the origin of thez

plane defined byz = reiθ with θ < π/2. For a givenθ , as r exceeds the critical value
rc(θ), one passes from the complex-temperatureFM phase into the complex-temperature
PM phase. At the phase boundary the elliptic modulusk< has magnitude unity and can
be writtenk< = eiφ , where the angleφ depends onθ . The pointz = zc corresponds to
k< = 1, andz = i to k< = −1; φ increases from 0 atθ = 0 to π at θ = π/2. Hence, for
0 < θ < π/2, k< has a non-zero imaginary part. Now when one passes through theFM–PM

phase boundary along the ray at this angleθ , one changes the argument of the elliptic
integrals fromk< = eiφ to k> = 1/k< = e−iφ . The elliptic integralsK(k) and E(k) are
analytic functions ofk2 with, respectively, a logarithmically divergent and a finite branch
point singularity atk2 = 1 and associated branch cuts which may be taken to lie along the
positive real axis in thek2 plane. In particular,K(k) andE(k) are both analytic at the point
k = k< = eiφ for 0 < θ < π/2. Hence, when we replace the argumentk< by k>, which is
the complex conjugate ofk< on the unit circle, we haveF(k> = e−iφ) = F(k< = eiφ)∗ for
F = K, E. Since these elliptic integrals are complex for generic complexk<, it follows that
their imaginary part is discontinuous across theFM–PM boundary. The coefficients of the
elliptic integrals are also different functions in theFM andPM phases, and these coefficients
are discontinuous as one crosses the boundary between these phases on the above ray.
Combining these, we find that the specific heat itself is discontinuous as one moves across
the FM–PM boundary on this ray. A similar discussion applies to the specific heat on the
triangular lattice.
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4. Complex-temperature behaviour of the spontaneous magnetization

4.1. General

For the3 = sq, t, and hc lattices,M is given by

M = (
1 − (k<,3)2

)1/8
. (4.1)

From equations (2.1) and (2.2), one has [17]

Mt =
(

1 + u

1 − u

)3/8(1 − 3u

1 + 3u

)1/8

(4.2)

and [18]

Mhc = (1 + z2)3/8(1 − 4z + z2)1/8

(1 − z)3/4(1 + z)1/4
. (4.3)

(Here,(1−4z+z2) = (1−z/zc)(1−zcz), wherezc = 2−√
3 is the physical critical point for

the honeycomb lattice.) These expressions apply within the respective physicalFM phases
on these two lattices and, by analytic continuation, throughout the complex-temperature
extension of these phases, withM = 0 elsewhere. We recall that, as a consequence of
the star–triangle relation which connects the Ising model on the triangular and honeycomb
lattices [19],

Mt(u) = Mhc(z
′) (4.4)

whereu andz′ are related by (2.13).
Concerning the singular points of the magnetization, in addition to its well known

continuous zero at the physical critical pointuc = 1
3 on the triangular lattice (with exponent

β = 1
8), Mt also vanishes at the complex-temperature singular pointu = −1 ≡ us, with

exponent

βs = 3
8 . (4.5)

With the exception of these two points,uc andus, Mt vanishes discontinuously elsewhere
along the outer boundary of the complex-temperature extension of theFM phase. In addition,
Mt diverges at theCT point u = ue = − 1

3, with exponent

βe = − 1
8 . (4.6)

Note that despite the(1 − u)−3/8 factor in the exact expression (4.2),Mt does not
in fact diverge atu = 1, since this point lies outside theFM phase where equation (4.2)
applies (indeed,Mt is identically zero in the vicinity of this pointz = 1, which is in thePM

phase). Similarly, in addition to its well known continuous zero at the physical critical point
zc = 2 − √

3 on the honeycomb lattice (with exponentβ = 1
8), Mhc vanishes continuously

at the complex-temperature pointsz = zs± = ±i, with exponentβs = 3
8. The fact that this

exponent is the same as the exponent with whichMt vanishes atus = −1 follows from
(4.4), given the fact thatu = −1 on the triangular lattice corresponds, via equation (2.13),
to z′ = z = ±i on the honeycomb lattice. Elsewhere along the boundary of theFM phase,
Mhc vanishes discontinuously. Finally,Mhc has a divergence atz = z` = −1, with exponent

β` = − 1
4 . (4.7)

Note that the apparent zero atz = 1/zc and the apparent divergence atz = 1 do not actually
occur, since these points are outside theFM phase where (4.3) applies. The fact that the
exponentβ` with which Mhc diverges at the pointz = −1 on the honeycomb lattice is
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twice the exponentβe with which Mt diverges at the pointu = − 1
3 on the triangular lattice

(which corresponds toz′ = z = −1 via (2.13)) follows from (4.4) and the property that the
Taylor series expansion ofu + 1

3, as a function ofz′, in the vicinity of z′ = −1, starts with
the quadratic term, as given in (3.16).

Since the honeycomb lattice is loose-packed, one immediately infers the staggered
magnetizationMhc,st from the (uniform) magnetizationMhc: formally,

Mhc,st(y) = Mhc(z → y) (4.8)

wherey = 1/z.

4.2. Theorem onM → ∞ ⇒ χ → ∞
Such an exotic phenomenon as a divergent spontaneous magnetization, as occurs forMt at
u = − 1

3, has received very little attention in the literature. Indeed, one is used to regarding
the divergence in the susceptibility at the physical critical point as a reflection of the fact
that M = 0 there but is just on the verge of becoming non-zero, so that an arbitrarily
small external field has an arbitrarily large effect. This intuitive physical understanding
does not prepare one to deal with the case whenM diverges and the question of how the
susceptibility behaves at such a point. We begin by stating and proving a theorem which
deals with an important effect of such a divergence. First, we prove a lemma concerning
two-spin correlation functions:

Lemma 1.Assume that a given statistical mechanical model has a phase with ferromagnetic
long-range order. In this phase, and in its extension to complex temperature, the two-spin
correlation function can always be written in the form

〈σnσn′ 〉 = M2c(n, n′) (4.9)

whereM is the spontaneous magnetization andc(n, n′) contains all of the dependence on
the lattice sitesn andn′.

Proof. This result follows easily from the fact that one of the equivalent definitions ofM

is precisely via the relation

M2 = lim
|n−n′|→∞

〈σnσn′ 〉 . (4.10)

Given the correlation function〈σnσn′ 〉, one may thus calculateM2 from the limit (4.10) and
divide, thereby obtaining the functionc(n, n′) (with the property lim|n−n′|→∞ c(n, n′) = 1).

�

As an immediate corollary, we have

Lemma 2.Assume that a given statistical mechanical model has a phase with ferromagnetic
long-range order. In this phase, and in its extension to complex temperature, the connected
two-spin correlation function can always be written in the form

〈σnσn′ 〉conn = M2c(n, n′)conn (4.11)

whereM is the spontaneous magnetization andc(n, n′)conn contains all of the dependence
on the lattice sitesn andn′.

Proof. This follows immediately from the definition of the connected two-spin correlation
function as〈σnσn′ 〉conn ≡ 〈σnσn′ 〉 − M2, which also shows thatc(n, n′)conn = c(n, n′) − 1.

�
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We then proceed to

Theorem 1.If the magnetizationM diverges as one approaches a given point from within
the (complex-temperature extension of the) ferromagnetic phase, then, in the same limit,
the susceptibility also diverges.

Proof. The susceptibilityχ̄ is given as the sum over the connected two-spin correlation
functions

χ̄ = N−1
s lim

Ns→∞

∑
n,n′

〈σnσn′ 〉conn

=
∑

n

〈σ0σn〉conn (4.12)

(where the homogeneity of the lattice has been used in the second line). Using lemma 2,
we have

χ̄ = M2
∑

n

c(n, n′)conn. (4.13)

It follows that, in general, a divergence inM will cause a divergence in̄χ . �
Note that this would be true even in the hypothetical case in whichM is divergent but

the correlation length is finite, so that the sum
∑

n c(n, n′)conn converges.
We next apply theorem 1 to the current study:

Corollary 1. For the Ising model on the triangular lattice,χ̄t has a divergent singularity at
u = − 1

3.

Proof. This follows from the fact that, as we know from the exact result, (4.2),Mt diverges
at u = − 1

3 together with theorem 1. �
Note that unlike the study of the low-temperature series, which is, of course, approximate

since the series only extends to finite order, this is an exact rigorous result. What the studies
by Guttmann [6] and the present authors yield beyond the result of the theorem is the actual
values of the exponentγ ′

e and critical amplitudeA′
e.

Also, observe that we did not explicitly use any property of the correlation length
to make this conclusion. Our theorem and corollary allow us to infer without a direct
calculation that the correlation length does in fact diverge atu = − 1

3 (as this point is
approached from the interior of the complex-temperature extension of theFM phase, i.e. from
all directions except from the left along the singular line segment (2.11)). We can deduce
this because if the correlation length were finite, then the sum over two-spin correlation
functions in (4.12) would be finite. (Since only the large-distance behaviour is relevant to a
possible divergence, one can replace the sum by an integral, and because of the exponential
damping from〈σ0σr〉 ∼ r−per/ξ , the integral is finite.) But then since the only divergence
would arise from the prefactor ofM2

t , we would have the exponent relationγ ′
e = −2βe.

Since−2βe = 1
4, while the series analyses yieldγ ′

e = 5
4, the above exponent relation does

not hold. This shows then, that the correlation length diverges atu = − 1
3.

5. Analysis of low-temperature susceptibility series

5.1. General

Here we shall study the complex-temperature singularities of the susceptibilityχ̄ which
occur as one approaches the boundary of the (complex-temperature extension of the)
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FM phase from within this phase, for the triangular and honeycomb lattices. The low-
temperature series expansion forχ̄t is given by

χ̄t = 4u3

(
1 +

∞∑
n=1

cn,tu
n

)
. (5.1)

The analogous series expansion forχ̄hc on the honeycomb lattice is of the same form, with
u replaced byz and cn,t by cn,hc. We shall also study the staggered susceptibility,χ̄

(a)

hc ,
which has a low-temperature series similar to that forχ̄hc with z replaced byy = 1/z, the
expansion variable in theAFM phase, andcn,hc replaced byc(a)

n,hc. These three series are
related by (2.12). They each have finite radii of convergence and, by analytic continuation
from the respective physical low-temperature intervals: (i) 06 u < uc, (ii) 0 6 z < zc and
(iii) 0 6 y < yc, apply throughout the complex extension of theFM phases on the t and hc
lattices and, in the third case, theAFM phase on the hc lattice. (Hereyc is the critical point
separating thePM andAFM phases on the hc lattice, which occurs atz = 1/zc = 2+√

3, so
thatyc = 2−√

3, the same numerical value as the critical pointzc separating thePM andFM

phases.) Since the respectiveu3, z3 andy3 prefactors are known exactly, it is convenient
to study the remaining factors̄χr,t = u−3χ̄t, χ̄r,hc = z−3χ̄hc, andχ̄

(a)

r,hc = y−3χ̄
(a)

hc . Following
earlier work [23], the expansion coefficientscn,t, cn,hc, and c

(a)

n,hc were calculated by the
King’s College group to ordern = 13 (i.e. χ̄t, χ̄hc, andχ̄

(a)

hc to O(u16), O(z16) and O(y16),
respectively) in 1971 [24], and to ordern = 18 in 1975 [25]. We have checked and found
that apparently these series have not been calculated to higher order subsequently [26, 27].

As one approaches a generic complex singular point denotedζsing (whereζ = u and
z for the t and hc lattices, respectively) from within the complex-temperature extension of
the FM phase,χ̄ is assumed to have the leading singularity

χ̄(ζ ) ∼ A′
sing(1 − ζ/ζsing)

−γ ′
sing(1 + a1(1 − ζ/ζsing) + · · ·) (5.2)

whereA′
sing andγ ′

sing denote the critical amplitude and the corresponding critical exponent,
and the. . . represent analytic confluent corrections. One may observe that we have not
included non-analytic confluent corrections to the scaling form in (5.2). The reason is that,
although such terms are generally present at critical points in statistical mechanical models,
previous studies have indicated that they are very weak or absent for the usual critical point
of the 2D Ising model [28, 29].

5.2. Triangular lattice

It was noticed quite early that the low-temperature series forχ̄t does not give very good
results for the position of the physical critical point or for its exponentγ ′. The cause for this
was recognized to be the existence of the unphysical, complex-temperature singularity at
ue = − 1

3, the same distance from the origin (on the opposite side) as the physical singularity
atuc [4, 5]. A study of theCT singularity inχ̄t atue was carried out by Guttmann using ratio
and d log Pad́e methods. Writing the singular form asχ̄t ' A′

e(1 − u/ue)
−γ ′

e, he obtained

γ ′
e = 5

4 A′
e = −0.0568± 0.0008. (5.3)

We have extended this work with the use of differential approximants (DAs; for a review,
see [30]), and have compared these with results from d log Padé approximants (PAs). We
have found that theDAs yield a considerably more precise determination of the exponent
than the d logPAs. Given the evidence that non-analytic confluent singularities are weak or
absent for the physical critical point, which motivates the form (5.2),K = 1 differential
approximants should be sufficient for our purposes here. We have performed the analysis
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Table 1. Values ofre ≡ |ũsing−ũe|/|ũe| (whereũe = − 1
6) andγ ′

e from differential approximants
to low-temperature series for̄χr,t(ũ). We only display entries which satisfy the accuracy criterion
re 6 1 × 10−4.

[L/M0; M1] 104re γ ′
e [L/M0; M1] 104re γ ′

e

[0/6; 7] 0.56 1.2516 [3/5; 6] 0.68 1.2545
[0/6; 8] 0.01 1.2481 [3/5; 7] 0.44 1.2446
[0/7; 6] 0.56 1.2517 [3/6; 5] 0.68 1.2545
[0/7; 7] 0.14 1.2471 [3/6; 6] 0.61 1.2431
[0/7; 8] 0.27 1.2462 [3/6; 7] 0.31 1.2458
[0/7; 9] 0.23 1.2466 [3/7; 5] 0.44 1.2446
[0/8; 6] 0.0049 1.2481 [3/7; 6] 0.31 1.2458
[0/8; 7] 0.27 1.2462 [4/5; 5] 0.49 1.2528
[0/8; 8] 0.23 1.2466 [4/5; 6] 0.55 1.2436
[0/9; 7] 0.23 1.2466 [4/5; 7] 0.21 1.2468
[1/6; 6] 0.74 1.2424 [4/6; 5] 0.55 1.2436
[1/6; 7] 0.48 1.2443 [4/6; 6] 0.44 1.2444
[1/6; 8] 0.50 1.2441 [4/7; 5] 0.20 1.2469
[1/7; 6] 0.48 1.2443 [5/5; 5] 0.54 1.2437
[1/7; 7] 0.51 1.2440 [5/5; 6] 0.19 1.2470
[1/7; 8] 0.49 1.2535 [5/6; 4] 0.85 1.2573
[1/8; 6] 0.50 1.2441 [5/6; 5] 0.18 1.2472
[1/8; 7] 0.49 1.2535 [6/4; 6] 0.29 1.2458
[2/5; 7] 0.90 1.2564 [6/5; 3] 1.0 1.2594
[2/6; 6] 0.45 1.2524 [6/5; 5] 0.22 1.2467
[2/6; 7] 0.54 1.2438 [6/6; 4] 0.032 1.2496
[2/6; 8] 0.22 1.2467 [7/4; 5] 0.43 1.2444
[2/7; 5] 0.90 1.2565 [7/5; 4] 0.15 1.2507
[2/7; 6] 0.54 1.2438 [8/5; 3] 0.87 1.2578
[2/7; 7] 0.28 1.2461
[2/8; 6] 0.22 1.2467

both on the series for̄χt in the variableu and in a transformed variablẽu = u/(1 − 3u),
which has the effect of mapping the physical singularity atuc = 1

3 to infinity and thereby
increasing the sensitivity to theCT singularity atu = − 1

3, or equivalently,ũ = − 1
6. As

expected, our most precise results were obtained with this transformed series; these are
shown in table 1.

The results of this study agree with the old inference of a singularity inχ̄ atu = ue = − 1
3

[5]. For the exponent, we obtain

γ ′
e = 1.249± 0.005 (5.4)

strongly supporting the conclusion that the exact value isγ ′
e = 5

4, in excellent agreement
with Guttmann’s previous inference of this value using ratio and d log Padé methods [6].

For the critical amplitudeA′
e, we have used a method complementary to [6]: we compute

the series for(χ̄r,t)
1/γ ′

e. Since the exact function(χ̄r,t)
1/γ ′

e has a simple pole atue, one
performs a Pad́e analysis on the series itself instead of its logarithmic derivative. The
residue at this pole isRe = −ue(A

′
r,e)

1/γ ′
e, whereA′

r,e denotes the critical amplitude for̄χr .
It follows thatA′

e = 4u3
eA

′
r,e = −4(3)−7/4R

5/4
e . Using the inferred valueγ ′

e = 5
4 to compute

the series, we obtainA′
e = 25/4Ã′

e, and hence

A′
e = −0.057 66± 0.000 15 (5.5)

which is in agreement with [6] and has a somewhat smaller estimated uncertainty.
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It is of interest to compare this with the critical amplitude at the physical
critical point, as approached from within theFM phase. For reference, we note
that many authors express the singularity in terms ofT rather than u, namely,
χ̄sing ∼ A′

c,T (1 − T/Tc)
−γ ′ ∼ A′

c(1 − u/uc)
−γ ′

with γ ′ = 7
4. The critical amplitudes are

related according toA′
c = (4Kc)

7/4A′
c,T . After early work by Essam and Fisher [31],

Guttmann used a low-temperature series analysis to obtainA′
c,T = 0.0246± 0.0002,

i.e. Ac = 0.0290 ± 0.0002 and analytic methods to obtain the high-precision result
A′

c,T = 0.024 518 9020, i.e.A′
c = 0.028 905 388 [32] (see also [33, 34]). Using this latter

value, we find

A′
e

A′
c

= −(1.995± 0.005) (5.6)

where the uncertainty arises completely from the uncertainty inA′
e. The ratio (5.6) is slightly

less than, but close to, the simple relationA′
e/A

′
c = −2.

We have also carried out an analysis of the low-temperature series forχ̄t (again with
d log Pad́e and differential approximants) to study the singularity atu = −1. However, we
have found that the series, at least at the order to which it has been calculated, cannot probe
this point very sensitively. We believe that the reason for this is the fact that the series is
dominated by the singularity atu = − 1

3, which is not only closer to the origin but also
directly in front of the pointu = −1 as approached from the origin. (For further details,
the reader may consult our file hep-lat/9411023.) We can say that if the scaling relation
α′ + 2β + γ ′ = 2 holds atu = −1 for the Ising model on the triangular lattice, as it does
on the square lattice, then, given the exact result thatβs = 3

8 (see equation (4.2) below)
and our finding thatα′

s = 0 from the exact free energy (see equation (3.8) below), it would
follow that γ ′

s = 5
4, which would be equal to the value of the exponentγ ′

s for the singularity
at ue.

5.3. Honeycomb lattice

5.3.1. Singularity atz = −1 ≡ z`. Here we study the singularities in̄χhc and χ̄
(a)

hc as one
approaches the pointz` = −1 from within theFM andAFM phases. (For brevity of notation,
we sometimes omit the subscript hc.) Before proceeding, we consider the implications of
the exact relation (2.12). Given thatχt(u) has a singularity atu = ue = − 1

3, it follows that

the sumχhc(z
′) + χ

(a)

hc (z′) on the honeycomb lattice has the same singularity at the point
z′ = 1 corresponding via (2.13) tou = − 1

3. But this does not, by itself, determine the

singularities in the individual functionsχhc andχ
(a)

hc at this point. If one could prove that
bothχhc andχ

(a)

hc necessarily have the same singularity atz′ = −1, then the relation (2.12),
together with the result thatχt(u) ∼ (1 + 3u)−γ ′

e with γ ′
e = 5

4, the Taylor series expansion
of u + 1

3 as a function ofz′ (i.e. z on the honeycomb lattice) in the vicinity ofz′ = −1,
equation (3.16), would imply thatγ ′

` = γ ′
`,a = 2γ ′

e = 5
2. However, although it is plausible

that χhc andχ
(a)

hc do have the same singularities atz = −1, there is no simple relationship
between the respective low-temperature series for these two functions, as is clear from the
first few terms [24],

χ̄ = 4z3
[
1 + 6z + 27z2 + 122z3 + 516z4 + 2148z5 + · · ·] (5.7)

and

χ̄ (a) = 4y3
[
1 + 0 · y + 3y2 + 2y3 + 12y4 + 24y5 + · · ·] . (5.8)

Hence, an explicit series analysis is worthwhile to obtain the critical exponents.
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Table 2. Values ofr` ≡ |zsing−z`|/|z`| (wherez` = −1) andγ ′
` from differential approximants to

low-temperature series for̄χr,hc(z). We only display entries which satisfy the accuracy criterion
r` 6 10−2.

[L/M0; M1] 102r` γ ′
` [L/M0; M1] 102r` γ ′

`

[1/6; 6] 0.96 2.5188 [3/6; 7] 0.41 2.4136
[1/6; 7] 0.009 2.3989 [3/7; 6] 0.96 2.3022
[1/7; 5] 0.57 2.4418 [4/4; 6] 0.51 2.1301
[2/6; 6] 0.48 2.4588 [4/6; 6] 0.54 2.3580
[2/7; 5] 0.54 2.2967 [5/4; 5] 0.007 2.1252

[5/4; 6] 0.65 2.0704

5.3.2. Exponent atz = −1. Since we obtained more precise results from theDA than the
d log PA study, we concentrate on the former here. As we did for our work on the square
and triangular lattice, we use an extrapolation technique in which we plot the value of the
exponent obtained from each differential approximant as a function of the distance of the
corresponding pole location from the inferred exact position of the singularity and then
extrapolate to zero distance of the pole from this singularity to obtain the estimate of the
exponent. Of course, this is essentially equivalent to using biased differential approximants.
We present our results in table 2.

These results yield evidence thatχ̄hc has a divergent singularity atz = −1, as one
approaches this point from the complex-temperatureFM phase. Since the values of the
exponent from the differential approximants show considerable scatter, it is only possible
to extract a rather crude estimate forγ ′

`. We obtain

γ ′
` = 2.4 ± 0.3 . (5.9)

This is consistent with the following inference which we shall make for the exact value of
this exponent:

γ ′
` = 5

2 . (5.10)

5.3.3. Critical exponent of̄χ(a)

hc at thez = −1 singularity. The staggered susceptibilitȳχ(a)

hc
has a well known divergent singularity aty = yc = 2 − √

3 with low-temperature exponent
γ (a)′ = 7

4. Here we analyse the complex-temperature singularities of this function using its
low-temperature series. Our results from the differential approximants are listed in table 3.
From these we find strong evidence that as one approaches the pointy = 1/z = −1 from
within the complexAFM phase,χ̄ (a)

hc has a divergent singularity. It is interesting that the
exponent values from these differential approximants show less scatter than those which we
found for the uniform susceptibility. Using our extrapolation technique, we obtain

γ ′
`,a = 2.50± 0.03 (5.11)

where the quoted uncertainty is a subjective estimate of the accuracy of the extrapolation.
This is consistent with the following exact value, which we infer:

γ ′
`,a = 5

2 (5.12)

so that, with this inference,

γ ′
`,a = γ ′

` . (5.13)
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Table 3. Values ofry = |ysing−y`|/|y`| (wherey` = −1) andγ ′
`,a from differential approximants

to low-temperature series for̄χ(a)
r,hc(y). We only display entries which satisfy the accuracy

criterion ry 6 10−2.

[L/M0; M1] 102ry γ ′
`,a [L/M0; M1] 102ry γ ′

`,a

[0/7; 6] 0.12 2.4468 [2/7; 6] 0.40 2.4265
[0/7; 7] 0.98 2.3222 [2/8; 6] 0.008 2.4837
[0/7; 8] 0.065 2.4810 [3/6; 4] 1.0 2.7256
[0/7; 9] 0.36 2.5718 [3/6; 5] 0.42 2.6064
[0/8; 7] 0.48 2.3996 [3/6; 6] 0.39 2.4283
[0/9; 7] 0.15 2.5192 [3/6; 7] 0.29 2.5645
[1/6; 7] 0.47 2.4076 [3/7; 6] 0.014 2.4976
[1/6; 8] 0.13 2.5237 [4/6; 4] 0.36 2.6153
[1/7; 6] 0.75 2.3586 [4/6; 5] 0.83 2.5168
[1/8; 6] 0.12 2.4668 [4/6; 6] 0.16 2.4518
[2/5; 7] 0.74 2.3391 [5/4; 6] 0.96 2.4347
[2/6; 6] 0.42 2.4235 [5/5; 6] 0.046 2.4251
[2/6; 7] 0.41 2.4243 [5/6; 4] 0.68 2.4105
[2/6; 8] 0.31 2.5572 [5/6; 5] 0.24 2.4589
[2/7; 5] 0.18 2.5643

We have also calculated the critical amplitudeA′
`,a in the staggered susceptibility as one

approachesz = y = −1 from the complexAFM phase, using the same methods as those we
used for the triangular lattice. We find

A′
`,a = −0.700± 0.010. (5.14)

Having inferred thatχ̄hc and χ̄
(a)

hc have the same power-law divergence atz = y = −1,
as approached from the complexFM and AFM phases, respectively, we can next use the
relation (2.12) to computeA′

`. For this purpose, we recall that on the triangular lattice,
at the corresponding pointu = ue = − 1

3, the (uniform) susceptibilityχ̄t has the leading
singularity χ̄t ∼ A′

e,t(1 + 3u)−5/4. Using this, together with the Taylor series expansion
(3.16), we find the following relations among the critical amplitudeA′

e,t at u = − 1
3 on the

triangular lattice andA′
` andA′

`,a at z = −1 on the honeycomb lattice:

2(35/4)A′
e,t = A′

` + A′
`,a . (5.15)

Substituting (5.14) and (5.5) into (2.12), we obtain the critical amplitude for the uniform
susceptibility,

A′
` = 0.245± 0.010. (5.16)

We also used the low-temperature series forχ̄hc and χ̄
(a)

hc to investigate the singular
behaviour of these functions as one approaches the pointsz = zs± = ±i from within the
complex-temperatureFM and AFM phases, respectively. However, we were not able to
obtain conclusive results.

6. Some remarks on exponent relations

We have previously shown that in general at complex temperature singularities, a number
of the usual scaling relations applicable for physical critical points do not hold [7, 9].
We have demonstrated that atu = us = −1 on the square lattice, firstγs 6= γ ′

s, and
second, there is a violation of universality, as evidenced by the lattice dependence of the
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magnetization critical exponentβ. Third, as one approaches the pointu = −1 from within
the complex-temperatureFM phase, the inverse correlation lengthξ−1

FM,row defined from
the row (or equivalently, column) connected two-spin correlation functions (analytically
continued throughout the complex-temperature extension of theFM phase) vanishes like
|1+u|ν ′

s with ν ′
s = 1, whereas the inverse correlation lengthξ−1

FM,d defined from the diagonal
connected two-spin correlation functions vanishes like|1 + u|−νs,diag with νs,diag = 2 in the
same limit [9]. We have generalized this as follows. The exact calculation of the asymptotic
form of the two-spin correlation function〈σ0,0σm,n〉 [35] for the square lattice (analytically
continued throughout the complexFM phase), we have shown that the inverse correlation
length extracted from〈σ0,0σm,n〉conn as r = (m2 + n2)1/2 → ∞ vanishes asu → us from
within the complexFM phase like|u + 1|ν ′

s with ν ′
s = 1 if θ = arctan(m/n) does not

represent a diagonal of the lattice, i.e. is not equal to±π/2 or ±3π/2. This result in
turn undermines the naive use of renormalization-group methods to derive scaling relations
for exponents since these methods rely on the existence of a single diverging length scale
provided by the correlation length. These findings show that universality, scaling, and
exponent relations which were applicable to physical critical points do not, in general, hold
for complex-temperature singular points.

For the singularity atu = −1 on the triangular lattice, the exact results (3.8) and (4.5),
together with the valueγ ′

s = 5
4 inferred from series analysis [6], imply that the exponent

relationα′
s + 2βs + γ ′

s = 2 is satisfied as this point is approached from within theFM phase.
The same relation is also satisfied for the approach tou = −1 from theFM phase on the
square lattice, given the exact valuesα′

s = 0 (log div), βs = 1
4, and the valueγ ′

s = 3
2

inferred from series analyses [8, 9] and from an exact exponent relationγ ′
s = 2(γ − 1)

[9, 36]. However, the analogous relation for the approach tou = −1 from within the
symmetric phase, namelyαs + 2βs + γs = 2, is false, sinceαs = 0 (log divergence) and [7]
γs < 0.

Concerning exponent relations at the singularityz = −1 on the honeycomb lattice, using
the exact valuesα′

`,FM = 2 from equation (3.14) andβ` = − 1
4 from (4.7) and our inferred

exact value from series analysis,γ ′
`,FM = 5

2, we find that

α′
`,FM + 2β` + γ ′

`,FM = 4 . (6.1)

(More generally, using our actual numerical determination ofγ ′
`,FM in equation (5.9), the

right-hand side of the equation is consistent with being equal to 4.) The right-hand side of
(6.1) is twice the value at physical critical points. We have given an explanation above of
why the exponentsα′

`,FM and β` for the singularity atz = −1 on the honeycomb lattice
have twice the values of the respective exponentsα′

e andβe on the triangular lattice, at the
point u = − 1

3 which corresponds, via (2.13) toz′ = z = −1 on the honeycomb lattice; this
followed from the star–triangle relation connecting the Ising model on these two lattices
together with the fact that the Taylor series expansion ofu + 1

3, as a function ofz′, starts
at quadratic order. We have also noted above the connection of our finding from the series
analysis thatγ ′

` for the honeycomb lattice has twice the value of the correspondingγ ′

exponent for the singularity atu = − 1
3 on the triangular lattice with the exact relation

(2.12). Since the exponentsα′
`,FM and β` in (6.1) have twice the value of the respective

exponents for the corresponding singularity atu = − 1
3 on the triangular lattice, and the

same is true of the inferred exact valuesγ ′
`,FM = 5

2 from the present work andγ ′
e = 5

4 from
[6], the right-hand side is also twice the value of 2 which holds for the triangular lattice.

One may also consider the analogous equation for the approach toz = −1 from
within the complex-temperature extension of theAFM phase. We have extracted the exact
value α′

`,AFM = 2 in (3.14) and, as discussed above, given the loose-packed nature of the
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honeycomb lattice and the resultant relation (4.8), it follows that the staggered magnetization
diverges with the exponentβ`,st = β` = − 1

4 as one approaches the pointz = −1 from
within the complex-temperatureAFM phase. Combining these exact results with the inferred
exact valueγ ′

`,a = 5
2 from our analysis of the low-temperature series for the staggered

susceptibility, we find

α′
`,AFM + 2β`,st + γ ′

`,a = 4 (6.2)

in complete analogy with (6.1), as expected for a loose-packed lattice.

7. Behaviour of χ̄ in the symmetric phase

The theorem proved in [7] and discussed further in [9] implies that, for the Ising model on
the square lattice,̄χ has at most finite non-analyticities as one approaches the boundary of
the complex-temperature extension of thePM phase, aside from the physical critical point
at v = vc. We would expect a similar theorem to hold for the triangular and honeycomb
lattices, although to show this with complete rigour, it would be desirable to perform an
analysis of the asymptotic behaviour of the general connected two-spin correlation function
〈σ0,0σm,n〉 as r = (m2 + n2)1/2 → ∞ for this lattice. This has not, to our knowledge,
been done (although some specific correlation functions on the triangular lattice have been
computed in [37]). Assuming that such a theorem does hold, it would follow, in particular,
that χ̄t(v) would have finite non-analyticities as one approaches the pointsv = ±i from
within the PM phase. We have analysed the high-temperature series expansion forχ̄t(v) to
investigate the singularities atv = ±i. This series is of the form̄χt = 1 + ∑∞

n=1 an,tv
n.

It has a finite radius of convergence and, by analytic continuation from the physical high-
temperature interval 06 v < vc, applies throughout the complex extension of thePM

phase. The high-temperature series expansion ofχ̄t is known to O(v16) [38, 26]. Since
we anticipated a finite singularity, we analysed this series using differential approximants,
which are capable of representing this type of singularity in the presence of an analytic
background term. Mainly because of the shortness of the series, our study did not yield a
definite value for the exponentγs at the pointsv = ±i corresponding to the pointu = −1 as
approached from within the complexPM phase. This might be possible with a substantially
longer high-temperature series.

For the honeycomb lattice we performed a similar analysis on the high-temperature
series forχ̄hc(v) and χ̄

(a)

hc (v) = χ̄hc(−v). The high-temperature series forχ̄hc(v) is related
to that for χ̄t(v) by (2.14) and has been calculated to O(v32) [38, 26]. However, there
are two semi-infinite line segments which protrude into the complex-temperaturePM phase,
with endpoints atv = ±ve = ±i/

√
3 (the phase diagram for the hc lattice is given by

figure 1(b) with the replacementsz → v, FM ↔ PM, and O→ AFM). We found that the
series are not sensitive to the singularities atv = ±i, presumably because of the effect of
the intervening singular line segments and their endpoints atv = ±i

√
3. We have also tried

to study the singularities in̄χ at these endpoints. Again, our study did not yield an accurate
value for the exponentγe, presumably due to the insufficient length of the series. However,
the (scattered) values ofγe were consistent with the expectation thatγe < 0.

8. Conclusions

In this paper we have investigated complex-temperature singularities in the Ising model on
the triangular and honeycomb lattices. As part of this, we have discussed the complex-
temperature phases and their boundaries. From exact results, we have determined these
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singularities completely for the specific heat and the uniform and staggered magnetization.
For the singularity atu = − 1

3, we have extended the previous study by Guttmann [6] with
the use of differential approximants and have found excellent agreement with his results. We
also discussed the implications of the divergence in the spontaneous magnetization at this
point. For the honeycomb lattice, from an analysis of low-temperature series expansions,
we have found evidence thatχ andχ(a) both have divergent singularities atz = −1 ≡ z`,
and our numerical values for the exponents are consistent with the hypothesis that the exact
values areγ ′

` = γ ′
`,a = 5

2. The critical amplitudes at this singularity were calculated. We
have found that the relationα′ + 2β + γ ′ = 2 is violated atz = −1; the right-hand side
is numerically consistent with being equal to 4. The connection between the exponents
at z = −1 on the honeycomb and the exponents at the corresponding pointu = − 1

3 on
the triangular lattice was discussed. Finally, we have commented on non-analyticities of
χ̄ which could occur as one approaches the boundary of the symmetric phase from within
that phase.
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