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Abstract. We study complex-temperature singularities of the Ising model on the triangular
and honeycomb lattices. We first discuss the comfflephases and their boundaries. From
exact results, we determine the complsingularities in the specific heat and magnetization.

For the triangular lattice we discuss the implications of the divergence of the magnetization at
the pointu = —3 (whereu = z2 = e~*X) and extend a previous study by Guttmann of the
susceptibility at this point with the use of differential approximants. For the honeycomb lattice,
from an analysis of low-temperature series expansions, we have found evidence that the uniform
and staggered susceptibilitigsand ¥ @ both have divergent singularities at= —1 = z,, and

our numerical values for the exponents are consistent with the hypothesis that the exact values
arey, =y, , = 2. The critical amplitudes at this singularity were calculated. Using our exact
results fore’ and g together with numerical values for’ from series analyses, we find that

the exponent relation’ + 28 + ' = 2 is violated atz = —1 on the honeycomb lattice; the
right-hand side is consistent with being equal to 4 rather than 2. The connections of the critical
exponents at these two singularities on the triangular and honeycomb lattice are discussed.

1. Introduction

In this paper we study complex-temperatug)(singularities of the (isotropic, nearest-
neighbour, spin}-) Ising model on the triangular and honeycomb lattices. There are several
reasons for studying the properties of statistical mechanical models with the temperature
variable generalized to take on complex values. First, one can understand more deeply
the behaviour of various thermodynamic quantities by seeing how they behave as analytic
functions of complex temperature; indeet!; singularities can significantly influence the
behaviour for physical values of the temperature. Second, one can see how the physical
phases of a given model generalize to regions in appropriate complex-temperature variables.
Third, a knowledge of the complex-temperature singularities of quantities which have not
been calculated exactly, such as the susceptibility obthising model, helps in the search

for exact, closed-form expressions for these quantities. The natural boundaries of the free
energy for the2d (square lattice) Ising model were first given in [1] (see also [2]). Early
studies ofcT singularities in theed and3b Ising model were motivated by their connection

with partition function zeros [1-3] and by their effect on series analyses at the physical criti-
cal point [4—6]. Other previous works @t properties of theb Ising model include [7-]

1 E-mail address: vmatveev@max.physics.sunysb.edu

1 E-mail address: shrock@max.physics.sunysb.edu

& We also note that (i) complex-temperature properties of anisoteogdging models have been discussed in [10];

(i) partition function zeros of some Potts models (the Ising model being the two-state case) have been discussed,
e.g. in [11, 12]; and (iii) a different approach to the effort to calculate the exmdsing susceptibility is via
inversion relations [13].
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2. Complex-temperature extensions of physical phases

Here we discuss the complex-temperature phase diagrams. Our notation follows that in our
previous paper [9], to which we refer the reader; we only recall thate 2%, 4 = z2 and

v = tanhK, whereK = pJ and 8 = (kgT)~!. It will be convenient to use the reduced
susceptibilityy = g~1x. Following the calculations of the (zero-field) free enerfj14]

of the square-lattice Ising modef,was calculated for the triangular (t) and honeycomb (hc)
lattices [15]. The spontaneous magnetizatidn first derived for the square lattice [16],

was calculated for the t and hc lattices in [17, 18], respectively. These works made use
of the geometric duality between the triangular and honeycomb lattices and the associated
star—triangle relation connecting the Ising model on these lattices (e.g. [19]). Two elliptic
modulus variables appropriate for the triangular (t) and honeycomb (hc) lattices are

432

ko=
T @432 — u)32

2.1)

and
4Z3/2(1 —z4+ Z2)1/2
1-231+2)
together withk.. , = k_*, for A =t, hc.
As before (see equations (2.10) and (2.11) of [9]), it is convenient to discussTthe
phase diagram in the variablesor v since these remove an infinite repetition of phases in
the complexK plane under certain imaginary shifts &f. The requisiteCT extensions of

the physical phases can be seen by using the exact expressions for the (reduced) free energy
f (f = =BF =limy_ o N5In Z) for the triangular lattice [15],

2.2)

<,hc =

fi=ln2+ 2 /_ﬂ /n ‘1921 (1922 n[C3+ $3 - SP(61,6)] (2.3)
and honeycomb lattice,

fre=In2+" /_n f_” (1021 d)@j [1[C3 41— $2P (61, 6)]} (2.4)
whereC = cosh(2K), § = sinh(2K), and

P (61, 62) = cosH; + cosh, + cogH; + 602) . (2.5)

The function P (64, 62) ranges from a maximum value of 3 &t = 6, = 0 to a minimum

value of—g at0; = 6, = 2w /3. The continuous locus of points where the free energy is
non-analytic is comprised of points where the argument of the logarithgf wianishes.

Some of these points form boundaries of complex-temperature phases, while others form
arcs or line segments which terminate in the interiors of phases and hence do not separate
any phases. Expressed in terms of low-temperature variables,

f=3K+2 / / Ciezlﬂiiz [(1+3u®) — 2u(L — ) P (61, 6,)] (2.6)

and

do; do,
f“°" / / 212

< IN[(1+2)*{(1— 22 + 622 — 223+ 2%) — 2:(1 - 2)?P (0. B2)}]. (27

1 The free energy is trivially infinite aK = +o00; since these are isolated points and hence do not form part of a
boundary separating phases, they will not be important here.
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(The fact that the log in the integral in (2.7) involves a polynomiak imather thanu is

due to the odd coordination numbgr= 3 of the hc lattice.) The respective arguments of
the logarithms in (2.6) and (2.7) vanish along the curves defined by the solutions to the
equations

14+3u?—2ul—u)x =0 (2.8)
and
(1-2z+622 -2+ 2% —22(1-2)%x =0 (2.9)

for —g < x < 3, wherex = P(61,02). (Note that the curve defined by the solution to
equation (2.9) contains the isolated paint —1 at which the initial factor(1+ z)2, in the
log in equation (2.7) vanishes.) The solution of (2.8) consists of the union of the circle

u=-3+2%d¢ (2.10)
for 0 < ¢ < 2 with the semi-infinite line segment

—co<u< —3 (2.12)

as shown in figure H). We denote the endpoint (e) of this line segment:as- —% and
the intersection of the circle and the line segmenttas= —1. The solution to (2.9) is
shown in figure 2. Since equations (2.8) and (2.9) have real coefficients, the solutions are
either real or consist of complex conjugate pairs; this explains why the respective phase
diagrams in figures &) and 2 are symmetric about the horizontal axes. Furthermore,
under the transformation — 1/u, the left-hand side of (2.8) retains its form, up to an
overall factor; consequently the locus of solutions in figure) 1§ invariant under this
mapping. The analogous statements apply to (2.9) and hence figure 2 concerning the
mappingz — 1/z.

The curves in figure H) for the triangular lattice divide the complex plane into
two regions which are complex-temperature extensions of physical phases: (i) the complex
ferromagnetic KM) phase, which is the extension of the physiesl phase occupying the
interval 0< u < uc, whereug = % is the critical point, and (ii) the compleX,-symmetric
or paramagneticrim) phase, which is the extension of the physiemlphase occupying the
interval uc < u < 1. There is no antiferromagnetically orderedn) phase for complex
temperature, just as there was none for physical temperature. Henceforth, for brevity we
shall generally drop the qualifier ‘complex-temperature extension’ on these phases and refer
to them simply agm andPm. As is evident from figure H), there is a section of the line
segment (2.11) protruding into the interior of the compiax phase. The corresponding
phase diagrams in the and v plane are shown in figuresldYand €) (for the latter, see
also [11]). Note that the phase labelled ‘O’ (for ‘other’) in figureb)lénd €) has no
overlap with any physical phase.

The complex-temperature phase diagram for the honeycomb lattice is shown in the
plane in figure 2 and consists Bfi, AFM andPm phases. As implied by duality, the curves
are formally identical to those of the triangular lattice in thplane (figure 1€)); however,
the actual phase structure is, of course, different. We label the peint-1 = z, and the
intersection pointg = +i = zs.. The phase diagram for the hc lattice in thelane is
obtained from figure 1K) for the t lattice in thez plane by the replacements— v, FM «
PM, and O— AFM.

The points on these phase diagrams where curves (including line segments) cross
each other are singular points of the curves in the technical terminology of algebraic
geometry [20]. Specifically, they are multiple points of index 2, where two arcs of the
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R . .
i endpoints of the arcs occur at= exp(+in/3).

curve cross each other (with an anglemf2). The arc endpoints at = e€*7/2 are, of
course, also singular points of the curve in the mathematical sense.

Using the general fact that the high-temperature and (for discrete spin models such as
the Ising model) the low-temperature expansions have finite radii of convergence, we can
use standard analytic continuation arguments to establish that in addition to the free energy
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and its derivatives, also the magnetization and susceptibility are analytic functions within
each of the complex-temperature phases. This defines these functions as analytic functions
of the respective complex variable,  or v). Our definition of singular forms of a function
at a complex-temperature singular point was given in [9]. Note, in particular, that whereas
a physical critical point can only be approached from two different phases, high- or low-
temperature, some complex-temperature singular points may be approached from more than
two phases.

For the hc lattice we shall also study the staggered susceptibjlity, The low-
temperature series for this quantity is expressed in terms of the vasiabld/z, and for
our analysis of this series, we observe that dtephase diagram in the plane has the
same phase boundaries as those in figure 2, owing to the invariance of this boundary under
z — 1/z. The phases are, of course, inverted, so that the innermost phase,io its
right, Pm, and in the outer regiorgm.

Finally, because of the star—triangle relations connecting the Ising model on the
triangular and honeycomb lattices, the following exact relations hold [21]:

xt@) = 3 xne@) + %8 @] (2.12)
where

u= ﬁﬂz (2.13)
and

xtw) = 3[xnc®) + xie )] = 3 [xnc®) + Xne(—v)] (2.14)
where

v? v (2.15)

T 1wt w?
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3. Complex-temperature behaviour of the specific heat

3.1. Triangular lattice
The exact expression for the specific h€ain the FM phase is [15]

8u 2(3u® + 9u? — Tu + k- 6(1— u)k-

kslK2C = — K(k.) —
B 1—u)? mud2(1 — u)? (k<) mud/?

E(k<) (.1

where K (k) = [7?d0[1 — k2sif6] Y2 and E(k) = [7/°dO[1 — k?sirP6]Y/2 are the

complete elliptic integrals of the first and second kinds, respectively, and in this subsection
we setk. = k_ ;. We proceed to analyse tleg singularities ofC.

3.1.1. Vicinity ofu = —%. To consider the approach to the point —% from within the
complex extension of them phase, we first note that, setting
u=—3+3e€? (3.2)

wheree is real and positive, the elliptic modulus diverges as
i

ke — _W as € —> 0. (3.3)
Taking the branch cut for the fractional powers in (2.1) to lie frem ue to u = —oo, then
for the approach ta = —% from the origin along the negative real axis, which corresponds

to ¢ =0 in (3.2) and (3.3)k. ~ —(i/2)(e)"¥2 — —ico. Next, we letk. = ix/«’, where
k' is the complementary elliptic modulus satisfying+« = 1. It follows that as: — —1,
k = €/(44 ¢) — 0. Using the identity [22]

K (ik/k") = k'K (k) (3.4)

we find that the term involving< (k.) in (3.1) approaches a constant tim@s+ 3u)~%/2.
In the second term, one factor ¢f + 3u)~%? comes from thek. while another comes
from the elliptic integralE(k.), so that this term diverges likél + 3u)~1. This is the
leading divergence i, so we thus obtain the exact result thatuas> —% from within
the complexrm phase, the critical exponent for the specific heat is

a,=1. (3.5)

To our knowledge, this is the first time an algebraic power has been found for the specific
heat critical exponent at a singular point ir@lsing model. For the critical amplitude, we
calculate (takingy = 0 in (3.2))
2(3)3/2
T

114 3u|™t. (3.6)

kglK_ZC —

The infinite set ofK values corresponding to the poimt= —% is

@n+1irx

4 3.7)

1
K=-In3-
4

wheren € Z.

1 Houtappel's expressions for the internal energy and specific heat, equations (108) and (109), respectively, in
[15], are incorrect if one uses the integralgg) andez(8) as he defines them, with the range of integration from

¢ = 0to 2r. If, instead, one takes the range of integration frére= 0 to ¢ = 7 /2, so that the integrals are just

the usual elliptic integralX (./B) and E(,/B), then his equations (108) and (109) become correct.
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3.1.2. Vicinity ofu = —1. We first observe that as — —1 from within the complexm
phasek. — —1. It follows that in this case the term involving(k.) in (3.1) is finite
while the term involvingK (k.) diverges logarithmically, so that at this poif = —1,

a,=0 (log div). (3.8)

Thus, the divergence in the specific heatizat —1 on the triangular lattice is of the same
logarithmic type that it is [8, 9] at = —1 on the square lattice, and the same as it is at the
respective physical critical points on both the square and triangular (as well as honeycomb)
lattices. For the critical amplitude, using the Taylor series expansidn 0&s a function

of u, nearu = —1,

ke=-1-231+uwd+0(1+u (3.9)

we calculate
A2 12i
kg K™ °C — 7|n|1+u| as u— —1. (3.10)

The infinite set ofK values corresponding to this point was given in (3.1.8) of paper I
K = —in/4+ nin/2 wheren € Z.

One can also consider the approachute- —1 from within the complex-temperature
extension of the symmetriem phase (from the upper left or lower left in figureal).
Using the exact expression for the specific heat applicable in the symmetric phase [15, 19],
we find the same logarithmic divergenced@n so that the corresponding exponent is

as=0 (log div). (3.11)

3.2. Honeycomb lattice

From the exact expression (2.7) f@., we calculate the specific heat in the phase as

8:2 [3—12(z +z7) + 28(z% + z%) — 20(z% + 2% + 184
(1-2z%? T(l+2)(1-2°A~-z+2%)
31-2)1+2)

e p———-l Ek.) (3.12)
(in this subsection we takke. = k. nc andk. = k. nc). The expression (3.12) applies in
both the physicaFm and AFM phases, and may be analytically continued throughout the
respective complex-temperature extensions of these phases.

Since there are singular arc endpoints protruding intorthghase for the honeycomb
lattice (in contrast to the case for the triangular lattice, where there are none), it will be of
interest to examine the singular behaviour of various quantities at these endpoints. For this
purpose, we observe that in the physiesl phase, one has

kg'K ~2C = K (k-)

3(1 -3

K(k>)_7_[(1+ 31}2)1/2

1
kgtK ~2C = v2(1—v2)1/2[—2(1—v2)3/2+ E(k>)} .

(3.13)

7 (1+3v2)1/2

3.2.1. Vicinity ofz = —1. As one approaches the point= z; = —1 from within either

the FM or AFM phase, the specific heat diverges, with the dominant divergence arising from
the first term in (3.12), which becomes2(1 + z)~2. (There is also a weaker, logarithmic
divergence from the term involving (k.).) Hence, we find

X = Uy ppm = 2. (3.14)
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Now, K = —% Inz, so choosing the branch cut for the complex logarithm to lie along the
negative real axis and choosing the first Riemann sheet for the evaluation of the logarithm,
as z approaches-1 from above or below the negative real axis, one Kas= Fix/2,
respectively, and hence in both cases
2
klc— " as z-— 1. (3.15)
2(1+2)2

It is interesting to relate the critical exponent (3.14) to the critical expongr(8.5) for
C on the triangular lattice at the point = ue = —%, which corresponds, via (2.13), to
7/ = z = =1 on the honeycomb lattice. (Recall that although these points correspond to
each other, the point = —% in the phase diagram of the triangular lattice can only be
approached from within them phase, whereas the point= —1 in the phase diagram of
the honeycomb lattice can be approached from within eitherither AFm phases.) Given
the star—triangle relations which connect the Ising model on these two lattices and the fact
that the Taylor series expansion of+ % as a function of’, in the vicinity of 7/ = —1

(= z on the honeycomb lattice), starts with the quadratic term,
u+3=3A+2)2+ 3A+2)° + 01 +2)h (3.16)

it follows that the exponents, -, = o ory = 2 atz = —1 on the honeycomb lattice have
twice the value ofr, = 1 atu = —1 on the triangular lattice.

3.2.2. Vicinity ofz = =+i. The pointsz = =i can be approached from within the
complex-temperature extensions of the, AFM and Pm phases. For the approach to
z = =i from within the complexFm and AFM phases, we find from (3.12) that the first
term and the term involvingt (k.) yield finite contributions, while the term involving
K (k.) diverges logarithmically, as-(4i/7)K (k. — —1). Using the fact that a5 — +1,
K(») — 3In(16/(1— %)), and the Taylor series expansion/df in the neighbourhood of
7 = =i,

k2 =1-2zFi)*+0(z Fi)h (3.17)

we can express the most singular term onrhe of equation (3.12) ag(2i/7) In[(z F1)3].
EvaluatingK = —% Inz for z = &i on the first Riemann sheet of the logarithm, we have
K = Fin/4, so that

i
kg'C~E_—1In 3. 3.18
5 & e+ (3.18)
It follows that forz = z5+ = =i,
agpy = Agapm =0 (log div) . (3.19)

The results forrg gy andag ary are the same as we found for the analogous exponents on
the triangular lattice at the poimt = —1 corresponding, via (2.13) with’ = z, to z = i
on the honeycomb lattice.

For the approach to the points= vs; = =i from within the Pm phase, we find that
the term involvingK (k.) produces a logarithmic divergence @ so that the exponent
OspMm = Os IS

as=0 (log div). (3.20)

Taking the branch cuts for the factét+ 3v?)¥? to lie along the semi-infinite line segments
from +i/+/3 to +ico, and taking the approach such that1)¥/2 is evaluated as-i, we
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find that this term yieldg2i/7) In[(1 — k2)]. Using the Taylor series expansion kf, as
a function ofv, nearv =1,

k? =1—2i(w—1i)®+0O((w —i)* (3.21)

and its complex conjugate far — —i, and the resulk = arctanki+i) = +ix /4, we find
1 im 3
kg C ~ ) In[(v F1)7]. (3.22)

(In the evaluation of the function arctafh = %In[(lnL £)/(1 - ¢)] here and below, we
again use the first Riemann sheet of the logarithm.)

3.2.3. Vicinity ofv = #i(3)"%2.  We next determine the singularities of the specific heat
as one approaches the endpoints= +ve = =i/+/3 of the semi-infinite line segments
protruding into thepm phase. We find tha€ is divergent, with the leading divergence
arising from the term involvingt (k-.). This term givest(4v/3/7)(1+ 3v?) ! asv — i,

o]

ae=1. (3.23)
Using K = arctanki+i/+/3) = +ix/6, we have

1 T i
kgiC — F 215 30 as v— 173. (3.24)

3.2.4. Elsewhere on the complex-temperature phase boundahge free energy. is non-
analytic across the complex-temperature phase boundaries, and hence, of course, this is also
true of its derivatives with respect &, in particular, the internal enerdy and the specific
heatC. As an illustration, consider moving along a ray outward from the origin ofzthe
plane defined by = ré’ with 6 < 7/2. For a givend, asr exceeds the critical value
re(9), one passes from the complex-temperatevephase into the complex-temperature

PM phase. At the phase boundary the elliptic modutushas magnitude unity and can

be writtenk. = €%, where the angle® depends or®. The pointz = z. corresponds to
k.=1,andz =ito k. = —1; ¢ increases from 0 & =0 toxr atd = /2. Hence, for

0 <0 < /2, k. has a non-zero imaginary part. Now when one passes througimthr

phase boundary along the ray at this an@leone changes the argument of the elliptic
integrals fromk. = €% to k. = 1/k. = e '*. The elliptic integralsk (k) and E (k) are
analytic functions ofk? with, respectively, a logarithmically divergent and a finite branch
point singularity atk> = 1 and associated branch cuts which may be taken to lie along the
positive real axis in thé? plane. In particulark (k) and E (k) are both analytic at the point
k=k.=¢€?for 0 <6 < m/2. Hence, when we replace the argumentby k., which is

the complex conjugate df. on the unit circle, we havé (k. = e ) = F (k. = €%)* for

F = K, E. Since these elliptic integrals are complex for generic compleit follows that

their imaginary part is discontinuous across the-PM boundary. The coefficients of the
elliptic integrals are also different functions in the andPm phases, and these coefficients

are discontinuous as one crosses the boundary between these phases on the above ray.
Combining these, we find that the specific heat itself is discontinuous as one moves across
the FM—PM boundary on this ray. A similar discussion applies to the specific heat on the
triangular lattice.
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4. Complex-temperature behaviour of the spontaneous magnetization

4.1. General

For the A = sq, t, and hc latticesy is given by
M=(1- k0%,

From equations (2.1) and (2.2), one has [17]

1+u\¥8/1—3u\Y8
M, = 4.2
! (l—u) <l+3u> (4.2)

v = QYA -4z + AV
T A= YL+ )

(Here,(1—4z+z%) = (1—2z/z¢)(1—zcz), Whereze = 2—+/3 is the physical critical point for

the honeycomb lattice.) These expressions apply within the respective plwgiphlases

on these two lattices and, by analytic continuation, throughout the complex-temperature
extension of these phases, wihi = 0 elsewhere. We recall that, as a consequence of
the star—triangle relation which connects the Ising model on the triangular and honeycomb
lattices [19],

Mi(u) = Mnc(2) (4.4)

whereu andz’ are related by (2.13).

Concerning the singular points of the magnetization, in addition to its well known
continuous zero at the physical critical point= % on the triangular lattice (with exponent
B = %), M, also vanishes at the complex-temperature singular poiat —1 = us, with
exponent

(4.1)

and [18]

(4.3)

Bs=3. (4.5)

With the exception of these two pointg, andus, M; vanishes discontinuously elsewhere
along the outer boundary of the complex-temperature extension eftpaase. In addition,
M; diverges at theT pointu = ue = —%, with exponent

Be=—73. (4.6)

Note that despite th¢l — u)~%/2 factor in the exact expression (4.2)f; does not
in fact diverge atu = 1, since this point lies outside thev phase where equation (4.2)
applies (indeedj; is identically zero in the vicinity of this point = 1, which is in thepm
phase). Similarly, in addition to its well known continuous zero at the physical critical point
zc = 2 — +/3 on the honeycomb lattice (with exponght= —é), M vanishes continuously
at the complex-temperature points= z,+ = =i, with exponentgs = g The fact that this
exponent is the same as the exponent with whighvanishes aus = —1 follows from
(4.4), given the fact that = —1 on the triangular lattice corresponds, via equation (2.13),
to z/ = z = +i on the honeycomb lattice. Elsewhere along the boundary ofthphase,
M vanishes discontinuously. Finally/,. has a divergence at= z, = —1, with exponent

Bi=—13. (4.7)

Note that the apparent zeroat 1/z; and the apparent divergencezat 1 do not actually
occur, since these points are outside Hvephase where (4.3) applies. The fact that the
exponents, with which M. diverges at the point = —1 on the honeycomb lattice is
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twice the exponeng, with which M; diverges at the point = —% on the triangular lattice
(which corresponds t@’ = z = —1 via (2.13)) follows from (4.4) and the property that the
Taylor series expansion af+ % as a function ot’, in the vicinity of 7/ = —1, starts with
the gquadratic term, as given in (3.16).

Since the honeycomb lattice is loose-packed, one immediately infers the staggered
magnetizationMyc st from the (uniform) magnetizatioMp.: formally,

Mhcst(y) = Mne(z — y) (4.8)
wherey = 1/z.

4.2. Theorem oM — 00 = x — 00

Such an exotic phenomenon as a divergent spontaneous magnetization, as ockfyratfor
u= —%, has received very little attention in the literature. Indeed, one is used to regarding
the divergence in the susceptibility at the physical critical point as a reflection of the fact
that M = O there but is just on the verge of becoming non-zero, so that an arbitrarily
small external field has an arbitrarily large effect. This intuitive physical understanding
does not prepare one to deal with the case whediverges and the question of how the
susceptibility behaves at such a point. We begin by stating and proving a theorem which
deals with an important effect of such a divergence. First, we prove a lemma concerning
two-spin correlation functions:

Lemma 1.Assume that a given statistical mechanical model has a phase with ferromagnetic
long-range order. In this phase, and in its extension to complex temperature, the two-spin
correlation function can always be written in the form

(Onow) = M%c(n,n') (4.9)

where M is the spontaneous magnetization arid, n") contains all of the dependence on
the lattice sites: andn’.

Proof. This result follows easily from the fact that one of the equivalent definition&f of
is precisely via the relation
M?= lim (o,00). (4.10)
|n—n'|—o00
Given the correlation functiotv,o, ), one may thus calculat&? from the limit (4.10) and
divide, thereby obtaining the functiar(n, n’) (with the property lin),_,/|— c¢(n, n’) = 1).
(Il

As an immediate corollary, we have

Lemma 2.Assume that a given statistical mechanical model has a phase with ferromagnetic
long-range order. In this phase, and in its extension to complex temperature, the connected
two-spin correlation function can always be written in the form

(040n ) conn = Mzc(n, 1n")conn (4.11)

where M is the spontaneous magnetization atid, n’)conn cONtains all of the dependence
on the lattice siteg andn’.

Proof. This follows immediately from the definition of the connected two-spin correlation
function as(c,0, )conn = (0,0,) — M?, which also shows that(n, n')conn = c(n, n’) — 1.
([
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We then proceed to

Theorem 1.If the magnetization diverges as one approaches a given point from within
the (complex-temperature extension of the) ferromagnetic phase, then, in the same limit,
the susceptibility also diverges.

Proof. The susceptibilityy is given as the sum over the connected two-spin correlation
functions

= Z<OOUH>COHH (4.12)

(where the homogeneity of the lattice has been used in the second line). Using lemma 2,
we have

X = M2 Z C(i’l, n,)conn. (4.13)

It follows that, in general, a divergence M will cause a divergence ig. O

Note that this would be true even in the hypothetical case in wiidcis divergent but
the correlation length is finite, so that the sn), c(n, n")conn CONVeErges.
We next apply theorem 1 to the current study:

Corollary 1. For the Ising model on the triangular latticg, has a divergent singularity at
1

u = -3
Proof. This follows from the fact that, as we know from the exact result, (4R)diverges
atu = —3 together with theorem 1. O

Note that unlike the study of the low-temperature series, which is, of course, approximate
since the series only extends to finite order, this is an exact rigorous result. What the studies
by Guttmann [6] and the present authors yield beyond the result of the theorem is the actual
values of the exponent; and critical amplitudeAs.

Also, observe that we did not explicitly use any property of the correlation length
to make this conclusion. Our theorem and corollary allow us to infer without a direct
calculation that the correlation length does in fact diverge: at —% (as this point is
approached from the interior of the complex-temperature extension sitpbase, i.e. from
all directions except from the left along the singular line segment (2.11)). We can deduce
this because if the correlation length were finite, then the sum over two-spin correlation
functions in (4.12) would be finite. (Since only the large-distance behaviour is relevant to a
possible divergence, one can replace the sum by an integral, and because of the exponential
damping from(ogo,) ~ r=P€/¢, the integral is finite.) But then since the only divergence
would arise from the prefactor of/?, we would have the exponent relatigf = —2.
Since—28, = ;11, while the series analyses yiejd = %, the above exponent relation does
not hold. This shows then, that the correlation length diverges:at—%.
5. Analysis of low-temperature susceptibility series

5.1. General

Here we shall study the complex-temperature singularities of the susceptipilthich
occur as one approaches the boundary of the (complex-temperature extension of the)
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FM phase from within this phase, for the triangular and honeycomb lattices. The low-
temperature series expansion fgris given by

oo
Xt = 4u3<1 +y c,l,tu"> . (5.1)
n=1

The analogous series expansion f@¢ on the honeycomb lattice is of the same form, with

u replaced byz andc, by c,ne. We shall also study the staggered susceptibil;?cy,),

which has a low-temperature series similar to thatfgy with z replaced byy = 1/z, the

expansion variable in therm phase, and;, . replaced bycff_’ac. These three series are

related by (2.12). They each have finite radii of convergence and, by analytic continuation

from the respective physical low-temperature intervals: @ 0 < uc, (i) 0 < z < zc and

(iii) 0 < y < y¢, apply throughout the complex extension of the phases on the t and hc

lattices and, in the third case, them phase on the hc lattice. (Hesg is the critical point

separating them andAFM phases on the hc lattice, which occurg at 1/z¢ = 2+ /3, so

thaty. = 2— /3, the same numerical value as the critical peinseparating them andrFm

phases.) Since the respectivg 72 and y® prefactors are known exactly, it is convenient

to study the remaining factorg.. = u =3, Xrnc = 2 37he @andx e = y~3%\2. Following

earlier work [23], the expansion coefficients:, ¢,.ne, and cfjf,)m were calculated by the

King’s College group to order = 13 (i.e. 5, fne, andz,.2 to O(u'®), O(z'®) and Qy*9),

respectively) in 1971 [24], and to order= 18 in 1975 [25]. We have checked and found

that apparently these series have not been calculated to higher order subsequently [26, 27].
As one approaches a generic complex singular point dengigdwhere¢ = u and

z for the t and hc lattices, respectively) from within the complex-temperature extension of

the FM phase,x is assumed to have the leading singularity

X&) ~ A,sing(l - f/Csing)in/i”g(l +a1(1—- f/fsing) +--) (5-2)

where Ag;,, andyg;, denote the critical amplitude and the corresponding critical exponent,
and the... represent analytic confluent corrections. One may observe that we have not
included non-analytic confluent corrections to the scaling form in (5.2). The reason is that,
although such terms are generally present at critical points in statistical mechanical models,
previous studies have indicated that they are very weak or absent for the usual critical point

of the 2D Ising model [28, 29].

5.2. Triangular lattice

It was noticed quite early that the low-temperature seriesyfatoes not give very good
results for the position of the physical critical point or for its exponéntThe cause for this

was recognized to be the existence of the unphysical, complex-temperature singularity at
Ue = —%, the same distance from the origin (on the opposite side) as the physical singularity
atuc [4, 5]. A study of thecT singularity inx; atue was carried out by Guttmann using ratio

and dlog Paél methods. Writing the singular form gs= AL(1 — u/ue) ", he obtained

ve="2 Al = —0.0568- 0.0008. (5.3)

We have extended this work with the use of differential approximams; (for a review,

see [30]), and have compared these with results from dlo@ Rpgroximantsras). We

have found that th@As yield a considerably more precise determination of the exponent
than the dlogrAas. Given the evidence that non-analytic confluent singularities are weak or
absent for the physical critical point, which motivates the form (5R)= 1 differential
approximants should be sufficient for our purposes here. We have performed the analysis
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Table 1. Values ofre = [iising—tiel/|ite| (Whereiie = —%) andy; from differential approximants
to low-temperature series fgr.+ (i2). We only display entries which satisfy the accuracy criterion

re<1x 1074,

[L/Mo; M1]  10% Ye [L/Mo; M1]  10% Ve
[0/6; 7] 056 12516 [3/5; 6] 0.68 12545
[0/6; 8] 0.01 12481 [35;7] 0.44 12446
[0/7; 6] 056 12517 [3/6;5] 0.68 12545
[0/7; 7] 014 12471 [36:6] 061 12431
[0/7; 8] 027 12462 [3/67] 0.31 12458
[0/7; 9] 0.23 12466 [37;5] 0.44 12446
[0/8; 6] 0.0049 12481 [3/7;6] 0.31 12458
[0/8; 7] 0.27 12462 [4/5; 5] 0.49 12528
[0/8; 8] 0.23 12466 [4/5;6] 0.55 12436
[0/9; 7] 0.23 12466 [4/5;7] 0.21 12468
[1/6; 6] 0.74 12424 [46;5] 055 12436
[1/6;7] 0.48 12443 [4/6; 6] 0.44 12444
[1/6; 8] 050 12441 [47;5] 0.20 12469
[1/7; 6] 0.48 12443  [9/5; 5] 054 12437
[1/7;7] 051 12440 [5/5;6] 0.19 12470
[1/7; 8] 0.49 12535 [56:;4] 0.85 12573
[1/8; 6] 050 12441 [5/6;5] 0.18 12472
[1/8; 7] 0.49 12535 [6/4; 6] 0.29 12458
[2/5; 7] 0.90 12564 [§/5;3] 1.0 12594
[2/6; 6] 0.45 12524 [6§/5; 5] 0.22 12467
[2/6: 7] 054 12438 [6/6;4] 0.032 12496
[2/6: 8] 022 12467 [7/4:5] 0.43 12444
[2/7: 5] 0.90 12565 [7/5;4] 0.15 12507
[2/7; 6] 0.54 12438 [8/5; 3] 0.87 12578
[2/7; 7] 028 12461

[2/8; 6] 0.22 12467

both on the series fog; in the variablex and in a transformed variable = u/(1 — 3u),
which has the effect of mapping the physical singularity:@t= % to infinity and thereby
increasing the sensitivity to theT singularity atu = —%, or equivalently,ii = —%. As
expected, our most precise results were obtained with this transformed series; these are
shown in table 1.

The results of this study agree with the old inference of a singularigyatu = ue = —*

3
[5]. For the exponent, we obtain
Ye = 1.249+ 0.005 (5.4)

strongly supporting the conclusion that the exact valug/is= g, in excellent agreement
with Guttmann’s previous inference of this value using ratio and dlog Paethods [6].

For the critical amplitudet,, we have used a method complementary to [6]: we compute
the series for(j.)Y/%. Since the exact functioliy,)*”: has a simple pole ate, one
performs a Pa&l analysis on the series itself instead of its logarithmic derivative. The
residue at this pole i®e = —ue(A, )", whereA/ . denotes the critical amplitude fgy.

It follows that A, = 4u3A. , = —4(3)"7/*R/*. Using the inferred valug, = $ to compute
the series, we obtaid, = 254A., and hence

A, = —0.057 66+ 0.000 15 (5.5)

which is in agreement with [6] and has a somewhat smaller estimated uncertainty.
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It is of interest to compare this with the critical amplitude at the physical
critical point, as approached from within them phase. For reference, we note
that many authors express the singularity in terms Tofrather thanu, namely,
Xsing~ A7 (L—T/T)™ ~ ALl —ujuc)™ with ' = 7. The critical amplitudes are
related according toA, = (4K.)"/*A, ;. After early work by Essam and Fisher [31],
Guttmann used a low-temperature series analysis to obtaip = 0.0246+ 0.0002,

i.e. Ac = 0.0290+ 0.0002 and analytic methods to obtain the high-precision result
A r = 0.0245189020, i.eA; = 0.028 905 388 [32] (see also [33, 34]). Using this latter

value, we find

!

Ae = —(1.995+ 0.005 (5.6)
Ag

where the uncertainty arises completely from the uncertain#finThe ratio (5.6) is slightly
less than, but close to, the simple relatigfy A, = —2.

We have also carried out an analysis of the low-temperature serieg {again with
dlog Pa& and differential approximants) to study the singularity. at —1. However, we
have found that the series, at least at the order to which it has been calculated, cannot probe
this point very sensitively. We believe that the reason for this is the fact that the series is
dominated by the singularity at = —%, which is not only closer to the origin but also
directly in front of the pointu = —1 as approached from the origin. (For further details,
the reader may consult our file hep-lat/9411023.) We can say that if the scaling relation
o'+ 2B+ y’ = 2 holds atu = —1 for the Ising model on the triangular lattice, as it does
on the square lattice, then, given the exact result fhat g (see equation (4.2) below)
and our finding thatv;, = 0 from the exact free energy (see equation (3.8) below), it would
follow that y; = ;51, which would be equal to the value of the exponghtor the singularity
at ue.

5.3. Honeycomb lattice

5.3.1. Singularity at = —1 = z,. Here we study the singularities ifn. and )‘(,ﬁ? as one

approaches the point = —1 from within therm andAFM phases. (For brevity of notation,
we sometimes omit the subscript hc.) Before proceeding, we consider the implications of
the exact relation (2.12). Given that(u) has a singularity at = ue = —%, it follows that

the sumync(z') + x,ﬁ? (z’) on the honeycomb lattice has the same singularity at the point

7/ = 1 corresponding via (2.13) to = —1. But this does not, by itself, determine the

3
singularities in the individual functiongne and .\’ at this point. If one could prove that

both xnc and X,ﬂ? necessarily have the same singularity’at —1, then the relation (2.12),
together with the result that;(u) ~ (1 + 3u)~ with Ve = ;51, the Taylor series expansion

of u + % as a function of;’ (i.e. z on the honeycomb lattice) in the vicinity of = —1,
equation (3.16), would imply that, = y; , = 2y = g However, although it is plausible

that xn. and Xrﬁ‘é) do have the same singularitieszat —1, there is no simple relationship
between the respective low-temperature series for these two functions, as is clear from the

first few terms [24],

% = 42%[1+ 62 +272% + 122% + 516* + 214&° + - - -] (5.7)
and

X =4y 140y +3y° +2y° + 12y +24y° 4] (5.8)
Hence, an explicit series analysis is worthwhile to obtain the critical exponents.
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Table 2. Values ofr; = |zsing—z¢|/1z¢| (Wherez, = —1) andy, from differential approximants to
low-temperature series gt nc(z). We only display entries which satisfy the accuracy criterion

re <1072,

[L/Mo; M1]  10%r, [L/Mo; M1]  10%r v,
[1/6; 6] 0.96 25188 [3/6:7] 041 24136
[1/6;7] 0.009 23989 [3/7; 6] 096 23022
[1/7; 5] 057 24418 [44: 6] 051 21301
[2/6: 6] 048 24588 [46;6] 054 23580
[2/7: 5] 054 22967 [5/4:5] 0.007 21252

[5/4; 6] 0.65 20704

5.3.2. Exponent at = —1. Since we obtained more precise results from tlaethan the

dlog PA study, we concentrate on the former here. As we did for our work on the square

and triangular lattice, we use an extrapolation technique in which we plot the value of the
exponent obtained from each differential approximant as a function of the distance of the
corresponding pole location from the inferred exact position of the singularity and then

extrapolate to zero distance of the pole from this singularity to obtain the estimate of the
exponent. Of course, this is essentially equivalent to using biased differential approximants.
We present our results in table 2.

These results yield evidence that. has a divergent singularity at = —1, as one
approaches this point from the complex-temperatwmephase. Since the values of the
exponent from the differential approximants show considerable scatter, it is only possible
to extract a rather crude estimate figt. We obtain

v, =2.4+03. (5.9)
¢

This is consistent with the following inference which we shall make for the exact value of
this exponent:

Vi=23. (5.10)

5.3.3. Critical exponent of\?’ at thez = —1singularity. The staggered susceptibilig/’
has a well known divergent singularity at= y. = 2 — /3 with low-temperature exponent

y@ = 27‘. Here we analyse the complex-temperature singularities of this function using its
low-temperature series. Our results from the differential approximants are listed in table 3.
From these we find strong evidence that as one approaches theypeidy/z = —1 from

within the complexarm phase,z,.?’ has a divergent singularity. It is interesting that the
exponent values from these differential approximants show less scatter than those which we
found for the uniform susceptibility. Using our extrapolation technique, we obtain

Yia = 2.50£0.03 (5.11)

where the quoted uncertainty is a subjective estimate of the accuracy of the extrapolation.
This is consistent with the following exact value, which we infer:

Via =3 (5.12)
so that, with this inference,

J/E/,a = VZ/ : (513)
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Table 3. Values 0fry = |ysing—yel/|ye| (Wherey, = —1) andy, , from differential approximants

to low-temperature series quf“ﬂc(y). We only display entries which satisfy the accuracy

criterionr, < 1072,

[L/Mo; M1] 10, v, [L/Mo; M1]  10%r,
[0/7; 6] 0.12 24468 [27:6] 0.40 24265
[0/7; 7] 0.98 23222 [28;6] 0.008 24837
[0/7; 8] 0.065 24810 [3/6;4] 10 27256
[0/7;9] 036 25718 [36;5] 0.42 26064
[0/8: 7] 048 23996 [36;6] 0.39 24283
[0/9: 7] 015 25192 [36;7] 0.29 25645
[1/6: 7] 047 24076 [37;6] 0.014 24976
[1/6: 8] 0.13 25237 [46;4] 0.36 26153
[1/7: 6] 0.75 23586 [4/6;5] 0.83 25168
[1/8; 6] 0.12 24668 [46;6] 0.16 24518
[2/5: 7] 0.74 23391 [54:6] 0.96 24347
[2/6; 6] 042 24235 [55;6] 0.046 24251
[2/6: 7] 041 24243 [56;4] 0.68 24105
[2/6; 8] 031 25572 [56;5] 0.24 24589
[2/7;5] 0.18 25643

We have also calculated the critical amplitudle, in the staggered susceptibility as one
approacheg = y = —1 from the complexaFm phase, using the same methods as those we
used for the triangular lattice. We find

A}, = —0.700+ 0.010. (5.14)

Having inferred thaty,. and Xﬁ? have the same power-law divergencezat y = —1,

as approached from the complex and AFM phases, respectively, we can next use the
relation (2.12) to computel,. For this purpose, we recall that on the triangular lattice,
at the corresponding point = ue = —%, the (uniform) susceptibilityy; has the leading
singularity x; ~ A, (1 + 3u)~>*. Using this, together with the Taylor series expansion
(3.16), we find the following relations among the critical amplitutlg atu = —% on the
triangular lattice andi;, and A} , atz = —1 on the honeycomb lattice:

23MAL = A+ A, (5.15)

Substituting (5.14) and (5.5) into (2.12), we obtain the critical amplitude for the uniform
susceptibility,

A, = 0.245+0.010. (5.16)

We also used the low-temperature series jfg¢ and xé‘é) to investigate the singular

behaviour of these functions as one approaches the poiatgs: = =i from within the
complex-temperatureém and AFM phases, respectively. However, we were not able to
obtain conclusive results.

6. Some remarks on exponent relations

We have previously shown that in general at complex temperature singularities, a number
of the usual scaling relations applicable for physical critical points do not hold [7, 9].
We have demonstrated that at= us = —1 on the square lattice, firgts # y;, and
second, there is a violation of universality, as evidenced by the lattice dependence of the
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magnetization critical exponet. Third, as one approaches the paint —1 from within

the complex-temperaturem phase, the inverse correlation Iengﬁwl’mw defined from

the row (or equivalently, column) connected two-spin correlation functions (analytically
continued throughout the complex-temperature extension ofth@hase) vanishes like
|1+u|" with v, = 1, whereas the inverse correlation Ieng,qjd defined from the diagonal
connected two-spin correlation functions vanishes |tka- u|~"-% with v, giag = 2 in the

same limit [9]. We have generalized this as follows. The exact calculation of the asymptotic
form of the two-spin correlation functiofvo oo,..,) [35] for the square lattice (analytically
continued throughout the complex phase), we have shown that the inverse correlation
length extracted fromoo oo, )conn @S+ = (m? 4+ n?)/2 — oo vanishes as — us from

within the complexFm phase like|u + 1" with v, = 1 if § = arctarim/n) does not
represent a diagonal of the lattice, i.e. is not equattte/2 or +37/2. This result in

turn undermines the naive use of renormalization-group methods to derive scaling relations
for exponents since these methods rely on the existence of a single diverging length scale
provided by the correlation length. These findings show that universality, scaling, and
exponent relations which were applicable to physical critical points do not, in general, hold
for complex-temperature singular points.

For the singularity atz = —1 on the triangular lattice, the exact results (3.8) and (4.5),
together with the valugy, = % inferred from series analysis [6], imply that the exponent
relationag + 285+ y; = 2 is satisfied as this point is approached from within Rliephase.

The same relation is also satisfied for the approach to —1 from theFm phase on the

square lattice, given the exact values = 0 (log div), 8s = ;11, and the valugy, = 3

2
inferred from series analyses [8, 9] and from an exact exponent relgfiea 2(y — 1)
[9, 36]. However, the analogous relation for the approach t&« —1 from within the

symmetric phase, namety + 285+ ys = 2, is false, sincexs = 0 (log divergence) and [7]

ys < 0.

Concerning exponent relations at the singulatity —1 on the honeycomb lattice, using
the exact values, -, = 2 from equation (3.14) anfl, = —;11 from (4.7) and our inferred
exact value from series analysig, - = 3, we find that

pem t 280+ Vorn = 4- (6.1)

(More generally, using our actual numerical determinatiorygf,, in equation (5.9), the
right-hand side of the equation is consistent with being equal to 4.) The right-hand side of
(6.1) is twice the value at physical critical points. We have given an explanation above of
why the exponents; ., and g, for the singularity atz = —1 on the honeycomb lattice
have twice the values of the respective exponegtand 8. on the triangular lattice, at the
pointu = —% which corresponds, via (2.13) to = z = —1 on the honeycomb lattice; this
followed from the star—triangle relation connecting the Ising model on these two lattices
together with the fact that the Taylor series expansion af 1, as a function ot/, starts
at quadratic order. We have also noted above the connection of our finding from the series
analysis thaty, for the honeycomb lattice has twice the value of the corresponging

1

exponent for the singularity at = —3 on the triangular lattice with the exact relation

(2.12). Since the exponenis ,, and g, in (6.1) have twice the value of the respective

exponents for the corresponding singularityuat —% on the triangular lattice, and the

same is true of the inferred exact valugs,, = 3 from the present work ang, = 3 from

[6], the right-hand side is also twice the value of 2 which holds for the triangular lattice.
One may also consider the analogous equation for the approagch=to—1 from

within the complex-temperature extension of #rv phase. We have extracted the exact

value a; ry = 2 in (3.14) and, as discussed above, given the loose-packed nature of the
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honeycomb lattice and the resultant relation (4.8), it follows that the staggered magnetization
diverges with the exponerl, s = B, = —;11 as one approaches the point= —1 from

within the complex-temperaturem phase. Combining these exact results with the inferred
exact valuey, , = g from our analysis of the low-temperature series for the staggered
susceptibility, we find

aparm +2Best+ v, =4 (6.2)
in complete analogy with (6.1), as expected for a loose-packed lattice.

7. Behaviour of x in the symmetric phase

The theorem proved in [7] and discussed further in [9] implies that, for the Ising model on
the square latticey has at most finite non-analyticities as one approaches the boundary of
the complex-temperature extension of #he phase, aside from the physical critical point
atv = v.. We would expect a similar theorem to hold for the triangular and honeycomb
lattices, although to show this with complete rigour, it would be desirable to perform an
analysis of the asymptotic behaviour of the general connected two-spin correlation function
(00,00m.n) @ST = (m? + n?)Y2 — oo for this lattice. This has not, to our knowledge,
been done (although some specific correlation functions on the triangular lattice have been
computed in [37]). Assuming that such a theorem does hold, it would follow, in particular,
that x;(v) would have finite non-analyticities as one approaches the poirtsti from
within the PM phase. We have analysed the high-temperature series expansigivioto
investigate the singularities at = +i. This series is of the forny, = 1+ Zj"zl an V",
It has a finite radius of convergence and, by analytic continuation from the physical high-
temperature interval 6X v < wv., applies throughout the complex extension of the
phase. The high-temperature series expansiof; @ known to Qv'®) [38, 26]. Since
we anticipated a finite singularity, we analysed this series using differential approximants,
which are capable of representing this type of singularity in the presence of an analytic
background term. Mainly because of the shortness of the series, our study did not yield a
definite value for the exponemt at the pointsy = =i corresponding to the point = —1 as
approached from within the complew phase. This might be possible with a substantially
longer high-temperature series.

For the honeycomb lattice we performed a similar analysis on the high-temperature
series forync(v) and ;Zrﬁ‘c’)(v) = xhc(—v). The high-temperature series f@g:(v) is related
to that for xy(v) by (2.14) and has been calculated t¢vé%) [38, 26]. However, there
are two semi-infinite line segments which protrude into the complex-temperatupbase,
with endpoints atv = +ve = +i/+/3 (the phase diagram for the hc lattice is given by
figure 1p) with the replacements — v, FM < PM, and O— AFM). We found that the
series are not sensitive to the singularities at +i, presumably because of the effect of
the intervening singular line segments and their endpoints=atti/3. We have also tried
to study the singularities i at these endpoints. Again, our study did not yield an accurate
value for the exponent., presumably due to the insufficient length of the series. However,
the (scattered) values ¢f were consistent with the expectation that< 0.

8. Conclusions

In this paper we have investigated complex-temperature singularities in the Ising model on
the triangular and honeycomb lattices. As part of this, we have discussed the complex-
temperature phases and their boundaries. From exact results, we have determined these
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singularities completely for the specific heat and the uniform and staggered magnetization.
For the singularity ait = —%, we have extended the previous study by Guttmann [6] with
the use of differential approximants and have found excellent agreement with his results. We
also discussed the implications of the divergence in the spontaneous magnetization at this
point. For the honeycomb lattice, from an analysis of low-temperature series expansions,
we have found evidence thatand x both have divergent singularities at= —1 = z,,

and our numerical values for the exponents are consistent with the hypothesis that the exact
values arey; = y;, = :;’ The critical amplitudes at this singularity were calculated. We
have found that the relation’ + 28 + y’ = 2 is violated atz = —1; the right-hand side

is numerically consistent with being equal to 4. The connection between the exponents
at z = —1 on the honeycomb and the exponents at the corresponding Lp@int—% on

the triangular lattice was discussed. Finally, we have commented on non-analyticities of
x which could occur as one approaches the boundary of the symmetric phase from within
that phase.
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